PHYSICAL REVIEW E 68, 066305 (2003
Self-similarity of two flows induced by instabilities
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The implications of full self-similarity of the Rayleigh-Taylor mixing layer and the Kelvin-Helmholtz shear
layer are examined using a simplified group-theoretic analysis. The constraints on the behavior and evolution
of these layers imposed by rigorous self-similarity are identified, and equations are constructed for the growth
rate of these layers based on a total energy balance. This analysis does not prove that such flows will become
self-similar. Rather, the analysis demonstrates the behaviors that would arise if these flows were to become
fully self-similar.
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I. INTRODUCTION AND BACKGROUND ANALYSIS consistent with the physical processes active in these flows.
In this paper, we turn our attention to investigating the

Flows induced by instabilities are found in many engi- late-time, highly chaotic state that occurs when the flow field
neering and astrophysical circumstances. Specifically, the iris induced by Rayleigh-Taylor and Kelvin-Helmholtz insta-
stabilities induced by acceleratior gravity) and shears bilities. Both flows are characterized as inhomogeneous in
have attracted much attention and carry the well knowrone dimension and homogeneous in the remaining two, and
names of Rayleigh-TaylofRT) [1,2] and Kelvin-Helmholtz = both possess a persistent energy source term—i.e., the mean
(KH) instabilities[3]. While the initial linear, nonlinear, and shear in the KH layer, and the potential energy in the RT
transient processes are complicated, it is widely suspectddyer. Our primary objective is to determine the time-scaling
that at late time the RT and KH flows will relax toward a laws of various statistical parameters that may arise in the
self-similar statistical state where the dominant length scalestudy and modeling of these systems. A secondary goal is to
i.e., the mixing-layer width is growing as an algebraic func-determine the functional structure and dependencies of the
tion in time. The late-time scaling is typically based on growth rates of these flows. The methodology is a generali-
physical arguments and experimental and numerical resultgation of the approach recently applied to isotropic turbu-
appear to support the self-similarity assumption, at least in stence [4]. In addition, we will exploit the detailed energy
far as the evolution of the mixing-layer width is concerned.balance equation among kinetic energy, potential energy, and
More precisely, the fundamental assumption of self-their dissipation rates to construct expressions for the growth
similarity is that a RT or KH configuration starting from an rate of these mixing layers, detailing the functional form and
arbitrary initial state will relax toward a solution of the evo- dependencies of the coefficients. The consequences of “tur-
lution equations that is invariant under an appropriate symbulencelike” assumptions for the dissipation rate will be
metry group. demonstrated. Furthermore, the late-time scaling properties

The purpose of this paper is not to prove or disprove theof other important measurements are obtained.
actual existence of such a self-similar state for a particular The term “turbulence” in the context of the RT and KH
physical system or for a mathematical model of such a sysmixing layers warrants explanation. For the circumstance of
tem. Likewise, our purpose is not to demonstrate the attaina multimodal initial interface perturbation, the RT mixing
ment of a self-similar state in experiments or computationslayer grows, after the initial “linear” growth regime into a
Rather, our goal is to elucidate the nature of a fully self-chaotic flow of interacting “fingers” or “mushrooms” of
similar state for such systems. With this limited goal in mind, penetrating fluid$5,6]. At late times, as the kinetic energy of
it is still useful to note that the expectation is that the physi-the flow grows the flow in the core of the mixing layer looks
cal system(e.g., a RT or KH mixing laygrwould tend to- increasingly chaotic. However, at the edges of the mixing
ward the self-similar state at late times, after an initial tranHayer the layer may still be characterized by relatively iso-
sient time in which the correlations of fluctuating quantitieslated fingers of fluid penetrating a relatively quiescent fluid
become established. The attainment of late-time solutiondield and thus may not appear to be classically turbulent. This
either numerically or experimentally, is a daunting task fordistinction of a chaotic core flow and a strongly “intermit-
processes which are growing as power laws in time. Detertent” edge flow also pertains to the KH mixing layer. Re-
mining whether a system failed to achieve self-similarity duecently, some researchers have attempted to define a “mixing
to simulation times that are too short, simulation sizes thatransition” at which the fine scales typically associated with
are too small, or for some fundamental physical cause rehigh-Reynolds-number turbulent flows emer§é]. The
quires understanding the nature of the anticipated self-similaemergence of these fine scales may mark the broadband
state. Our goal is to describe a self-similar state consistergpectrum of turbulence dominated by inertial range dynam-
with the mathematical requirements of self-similarity andics. In the context of the RT and KH mixing layers, the
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distinction between the dynamics of the core flow versus thdt must be noted that even earlier Sharp and Whe&le(see

dynamics of the edges suggests that this emergence of firdso Shar5]) constructed a bubble amalgamation model for

scales may occur at different times for different locationsthe RT that predicted an average velocity of bubble ugg,

during the evolution of the flow. The present analysis doe®of

not explicitly pertain to the existence of an inertial range, or

the lack of one. However, an assumption regarding the nature valt)=Kkigt, (2.2

of the dissipative processes is made, and will be discussed in

detail. The specific changes in scaling behavior that may owhere

may not occur when inertially driven dissipative processes

dominate over simple viscous processes will be addressed. 1 1
The self-similar growth of chaotic RT mixing layers and Ky 20 100

KH shear layers has been studied over the past 30 years,

beginning with the seminal work of Tayl¢g]. Various the-  The coefficientk, is related to Youngsr parameter for the
oretical model descriptions, computational simulations ang, pple side of the layer and the Atwood number, ekg.,
experiments have been conducted. The physical picture tha_lzabubbleA_
has arisen is described by Shdfg and Youngg6]. In the Attempts have been made to assess the degree of self-
present circumstance, an initially randomly perturbed '”ter‘similarity of numerical simulations, e.d:6,9,10, and a va-
face grows, first through an early stage which yields to “”'riety of models of RT mixing layers, e.d.11—14.
earized analyses, and later through a late-time, highly cha- another approach is to substitute dimensionless functions
otic, nonlinear state. In the case of the RT mixing layer, th&, conjunction with dimensional time-dependent scaling fac-
driving energy is the potential energy of the unstably stratiyors into the governing equations, and then determining the
fied density field. In the case of the KH mixing layer, the necessary consistency relations for self-similarity. Ristorcelli
driving force is the difference in velocities across the mixing 5nq Clar[15] analyzed the second-moment equations of the
layer. , , , , _ Navier-Stokes equations in the Boussinesq limit for the
Our approach to studying this evolutionary picture is toRayleigh-Taylor mixing layer, and compared the resultant
exploit the implications of self-similarity of these highly cha- s¢ajings to direct numerical simulations. An interesting ex-
otic fluid layers. Decaymg_ isotropic turbulence was studiedension of this approach was exploited by Cle¢ral. [16] for
by Clark and Zemach4_] using spectral closure models and a compressible Rayleigh-Taylor mixing layers and by Cheng,
S|mple group-theoretic approach. Although the resultsslimm, and Sharf17] in the context of a bubble merger
achieved were not new, the approach used demonstrated thahqel. In these works, the scaling group was presumed, the
these p_rewo_usly r_eport_ed results were consistent Wlth th%quations were subjected to the scalings, and fixed-point
underlying dimensionality and symmetries of the functionsynalyses were carried out on the scaled system. This has
studied, rather than a unique product of specific physical oyen to be a powerful tool, and provides further motivation
models or assumptions of the previous analyses. We Willo; the present effort to clarify the mathematical basis of the
apply this same group-theoretic approach to these two simplgyropriate scaling groups. Of course the KH mixing layer
mixing layers. First we will demonstrate the application of yield to a similar analysis.
these ideas to the evolution of the mixing-layer widths. Next The intention of the present paper is to provide a more
we will apply them to some fundamental “turbulence” quan- general self-similar description of self-similar mixing layers
tities in these flows. We will then use thes_e results .to CONthat is not dependent upon a particular mathematical model
struct energy balances from which we will determine theqt the flow. With this goal in mind, it is expected that the
governing equations governing the self-similar growth rat&egylts of the present analysis should agree with previous
coefficients for these layers if a self-similar state is aCh'eVEdanaIysis if the underlying mathematical models used in pre-
Finally, we will apply the methodology to investigate the yjoys analyses do not violate the underlying mathematical
self-similarity of an inhomogeneous spectrum. The resultgymmetries. The more general approach is to exploit the un-
will not prove the existence of a self-similar turbulent yeying scaling groups that define the self-similarity. This
growth. Instead, they will describe the behavior of a self-j5iter method owes much to the work of Lie, although the
similar flow if such a flow were to exist in the context of RT yresent use of this approach is greatly limited for utilitarian
and KH mixing layers. As such, these results will merely 5, rposes. It requires no detailed physical model, or govern-
provide a basis for objective comparisons of real flows to 8ng equation, relying instead on the consequences of self-

2.3

postulated mathematically self-similar turbulent flow. similarity of the functional forms. The underlying viewpoint
is that the physical system acts dynamically upon an initial
IIl. SELF-SIMILARITY OF THE MIXING LAYER state, and under this dynamical action the system relaxes to

It is widely believed that many simple turbulent flows, &N invariant state. By invariant state, we mean a state that is

such as the RT and KH mixing layers evolve toward self.invariant under appropriate cl.asses .of subgroup_s of the_fuII
similarity. Youngs[6] exploited a self-similar modal growth 9roup of space-time symmetries. This approach is described
of the RT interface to arrive at the now famous formula forMore fully by Clark and Zemaci#] and the interested reader

mixing layer growth formula: is directed to that paper for a more complete description of

the approach. To demonstrate the approach, we will consider
W(t)=aAgt?. (2.1)  the case of the mixing layer widthv(t). After this brief

066305-2



SELF-SIMILARITY OF TWO FLOWS INDUCED BY ...

PHYSICAL REVIEW E58, 066305 (2003

demonstration, we will consider the cases of inhomogeneoushich is invariant if y=2. We conclude that a self-similar
energy spectra, density fluctuation spectra, and other statistheory for W(t) that has a physical parameter with the di-

cal characterizations of the flow.

A. Self-similar growth of the mixing
layer—a detailed calculation

mensionality of acceleration will have the form

t+1tg]?

to

W(t)=W, (2.13

In order to determine the self-similar form of the |f the dominant physical parameter has dimensions of a ve-
Rayleigh-Taylor mixing layer or the Kelvin-Helmholtz shear locity [LT "], e.g., the KH shear layer where the free-

layer, we begin by reviewing the scaling group exploited bystream velocities are; andU,, and the velocity difference
Clark and Zemaclj4] for the case of isotropic turbulence. across the layer

Indeed, this group yields a power-law behavior in time, as

observed for RT mixing layers and KH shear layers. These

scalings are as follows: for a length scdlscales td by
T=AI, (2.4
and for a time scale, scales tat by

t=r1(t+ty)—tg. (2.5

Note that we have included a translation in timgeand a

rescaling of timer and length\. Self-similarity assumes

AW(t) = W(r(t+1tg) —to). (2.6)

We anticipate that the solutions will be in terms of power
laws (this may be deduced from a classical similarity analy-

AUZUZ_Ul (214)

is the dominant parameter, then we require that something
with dimensions of velocity scale as

Ay=7""1A,, (2.15
yielding y=1, or a relationship linear in time:
t+t,
W(t)=W, . (2.19

If viscosity is the dominant physical constant, then we
find the group element from

p=72r"1yp, (2.17

sis, and is also the generally accepted notion of the behavior

of the RT and KH mixing layepns For this case we will

restrict the group as follows:
TV=N\, (2.7
S0
TYW(t) =W(r(t+1tg) —tp). (2.9
Differentiating with respect te yields

dW(t)
dt

yr o DWw(t) = (t+1o). (2.9

Now set7=1 to give the determining equation

W(t)

W . d

(t+1o). (2.10

The solution of this ordinary differential equation is

Y

: (2.11

t+1t,
to

giving y=1/2 and

1/2

(2.18

W(t)=WO[?O

The same result applies if diffusivity is the dominant physi-
cal constant. If a dominant fixed length scales dynami-
cally important, e.g., the size of a test vessel, or a fixed
length scale in a theory or model, then

L=7"L, (2.19

giving y=0 and

W(t)=W,. (2.20
These results are not based upon any assertion regarding
the detailed physical characteristics of the flaws., turbu-
lent, laminar, or othgr Rather, they represent a mathematical
statement regarding the form of self-similarity under a pos-
tulated physical constraint such as acceleration. Indeed, as
can be seen from these results, the subgroup element that
reconciles accelerationyE 2) is inconsistent with the sub-

wheret, may be positive or negative. It is assumed that thisgroup element that reconciles viscosity<1/2) or that
form applies for the case>t,. We now may restrict the Which reconciles a velocity differencey=1). A real flow
Subgroup dependent on the relevant physica| parameter fpossesses both ViSCOSity and an acceleration for the case of
the given flow field. For the case of a Rayleigh-Taylor mix- the RT mixing layer, or a velocity difference for the KH
ing layer, the dominating physical parameter is assumed tB1ixing layer. This implies that a concise single-parameter

be acceleratiomw, having dimensions dfLT~?]. Under the

scaling group cannot describe all scales of the flow. This is

scaling group above, we find that the acceleration scales aBerhaps relevant to the observations of Dimot@Kishat the

g=1""2g, (2.12

fine-scale “turbulent” mixing scales emerge at a specific
Reynolds number, and are not a gradual manifestation of

066305-3



T. T. CLARK AND Y. ZHOU PHYSICAL REVIEW E 68, 066305 (2003

increasing Reynolds number. Likewise, Clark and Zemactor equivalently
demonstrated that the scaling group elements that reconciled

the largest scales of an isotropic turbulence were not neces- — —f z

sarily consistent with those applicable to the dissipative p(zY)= P(W T
scales. For the present paper, we will restrict our attention to (2.28
the accelerative cas€RT with y=2) and the velocity-

difference caséKH with y=1). These group elements ef- Where

fectively exclude self-similarity of the viscous scales in a

flow field. That is to say, the presence of viscosity in the KH Y= i_ (2.29
shear layer or RT mixing layer may preclude absolute self- (t)

similarity in the same way that it excludes full self-
preservation in the case of isotropic turbulence.

t+t,

B3y

Clearly, the function varies from; on one side of the mix-

ing layer top, on the other. These densities are constant in

time and imply thatB,=8—3y=0. This implies that the

mass in a volume scales with the volume and is a corollary to
The mean(planar-averageddensityp(z,t) across the RT the incompressibility assumption. So the form for the density

or KH mixing layers is bounded by, (the heavy fluigland s

p; (the light fluid) for the case of incompressible flow. Note o

that the density has units of mass per unit volume, e.g., p(z,t)=Tf,(x)- (2.30

[M/L3]. Assuming that

B. Self-similarity of density across the layer

The density field may also be represented as a concentra-
M= r8M, (2.21) tion function C(z,t) that is dimensionless and varies from
—1 to +1 across the layer,

we have _
p(z,t)=p[AC(z,t)+1], (2.31
B=37,( =7(77 _
™ p(z,t) =p(77Z, 7(t+ o) — o). 222 ere
An alternative approach would be to assign the density a 1
scaling parameter, sg§p,= B8— 3. This present approach to pczz(pﬁpz) (2.32

determining the self-similar forms would yield a similar con-
clusion for these incompressible flows. Sincé a function

of two variables[unlike W(t)], the details of the solution
will be presented for clarity. First differentiate with respect to
7and setr=1, and divide through by+t,:

andA is the Atwood number

_ P2_P1:£ﬁ
p2tp1 2 pe

(2.33

-3 z dp dp . o :
P 7——7__p+_p (2.23  The concentration function is dimensionless, and a self-

p= .
t+to t+tg dz  dt similar solution would satisfy

The characteristic equation faris C(zt)=f(x), (2.34
dz(t) vz (2.24 with no explicit time dependence. The similarity function
dt t+ty’ ' may be assumed to vary from1 to +1. The self-similar
forms of the density and concentration are related:
with the solution
f,(x)=pc[Afc(x)+1]. (2.39
t+t,|”
2(t) =20 — (2.29 From the fact thaj3,=0, one can infer that single-point
0 moments of the fluctuating density will yield similar results,
Substituting gives €.g.,
B-3y_ dzip dp Dp P (Z) =1, n(x). (2.36

—p=——+ —. (2.26

t+to dtoz 4t Dt These results apply to both incompressible KH and RT mix-
ing layers and are a consequence of the assertion of self-
similarity and the nature of the kinetic energy dissipation

t+t0rsy mechanism. No particular model or theory has been invoked.

R

The solution is

p(z(1),1)=po(2o)

t
0 C. Scaling of velocity and kinetic energy in the mixing layer
B—3y . . . .

(2.27) Since the RT mixing layefand in some circumstances the

KH layer) possesses fluids of different densities, the mass-

t+t,

to

t+t,

to

=Fo(z(t)
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weighted averages seem most appropriate for describing the The total energy of fluctuations about the mass-weighted
energy of the flow. The mass-weighted average velocity is average is

~  puj 1
U‘:T’ (2.37 Q(z,t)=Ep(x,t)uﬁ(x,t)uﬁ(x,t), (2.42

where the overbar again denotes a planar average. Note thahere a summation is implied over repeated indices. Self-
we have chosen a single-field representation of the velocityimilarity imposes the condition that

and indices denote components of the vectArmultifield

velocity description could be analyzed as well, but since we AT 29(z,t) = Q(77zZ,7(t+tg) —tg). (243

are concerned only with the dimensionality of the functions,
the results would be essentially the sanikne fluctuation
about the average is

However, the analysis of the density field indicated tAgt
=0, from which one may infer that

(2.39 A(z,t)=Q(t)fo(x), (2.44)

where

Ug,:Ui_Ui .

If the density is constant across the layfer example, in the

KH mixing layen the mass-weighted description is equiva-

lent to the simple planar-averaged description. For the in- Q(t)=Q0[
compressible RT mixing layer thélanar-averagedmean
velocity is zero. This is because the netlumetricflux of
heavy fluid into light must equal the ngblumetricflux of
light fluid into heavy to satisfy the ansatz of incompressibil-
ity. These decompositions are not restricted to a “turbulent”
flow state—they may also be employed without ambiguity

t+tg]?7 2

to

(2.45

The functionfg(x) has the normalizatiofig(0)=1, so that
9(0t)=Q(t). This suggests that for the mass-weighted av-
erage characteristic velocity the time dependenceJ (i)
may be conveniently rewritten as

for stochastic flows at low Reynolds number. Q(t)]¥?
The similarity analysis indicates that the characteristic U(t)=Uy Q| (2.49
speedif(z,t) for the KH or RT mixing layer has the self- 0
similar form Such a form was also postulated by Sharp and co-workers
B [16]. The present result verifies that such a choice is a natural
Uzt =UT(x), (2.39 expression of the similarity of the flow.
where The moments of the velocity fluctuations about the

planar-averaged velocity field can be represented as follows.
r-1 The specific fluctuational energifluctuational energy per
, (2.40  unit mas$

independent of whether they are mass-weighted averages or K(z,t)= Em (2.47)
simple planar averages. 27" "

For the KH mixing layer,y=1 implies a self-similar form
with an amplitudeéJ (t) that is constant in time. The function
fu(x) is dimensionless and varies froml to +1 across the
layer. The velocity difference across the mixing layenig _
=U*"—U". Assume a frame whereit™=—-U"=Ux,, Mz O =K1k, (249
where U4 is the free-stream velocity. The mean velocity where
within the KH mixing layer is then

has the same scaling group @§z,t) (so long asB,=0),
and the analysis yields

2y-2

o , (2.49

to

_ 1 K(t):Ko[
UX(ZIt):EAufU(X)V (24])

and the functionf«(x) has the normalizatioffix(0)=1, so

whereA is again the difference of the free-stream veloci-that K(0t) =K (t). Now consider
ties.

For the RT mixing layery=2 gives linear growth in time kn(z,)={([u/(x,y,z,0)u/ (x,y,z,1)]"?),  (2.50
of the characteristic velocity. If the characteristic velocity
were assumed to be a simple planar-averaged velocity, themhere IC(z,t) = x,(t). The physical dimensionality o, is
Uy=0 in the self-similar form. The functioi,(y) is less (L/T)". The determining equation foe, is
than zero and approaches 0zas + . The normalization is

taken thatf,(0)=—1 so thatU(t) is positive and equal to n(y—1) o (zt)= dkn(zZ,t) ¥z Ikry(Z1)
the absolute value of the mass-weighted velocity at the cen- (t+ty) ™7 dz  (t+tg) iz
ter of the mixing layer. (2.5)
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The solution is Again, we assert thgBy=0, and pursue an analysis equiva-
lent to the analysis performed ferto yield
Kkn(Z,) =K"(0)f  n(x) (2.52
&z,H)=e(t)fx), (2.56
with normalization where the dimensional, time-dependent funci¢t) may be
written as
Kkn(0t)

f,n(0
en(0) ot

to

e(t)=¢g

S {WOHQ”(U}_ Zo Q¥Y)
— €0

Qg/z W(t) | pg/z W(t) -
at any timet. This result suggests that the skewness, hyper- (2,57
skewnesses, flatness, and hyperflatnesses of the velocity field '
become constant in time. This result is presented as a specififote that the parametef, is a constant. The factqy(l:/z is
test of self-similarity that can be tested in simulations of RTintroduced to make/, dimensionless:
and KH flows. (Our own computations suggest that this is

violated at the edges of the mixing layer. Wopllz
The results presented in this subsection are consequences {o=¢€g —3/; (2.58
of the assumption of self-similarity and are independent of 0

any assertions regarding the turbulent nature of the flow.
Sim”ar resu|ts ha\/e been |mp||ed in the analyses of two_ThiS Contl’ivance iS a.WkWa.rd and mlght be aVOided in Vari-
phase flow models by Chest al.[12], by Glimm, Saltz, and ©uUs ways. For example, one might define the dissipation rate
Sharp[18], and by others. Q(z,t) asp.&(z,t) where the functiorf has the dimensions
of [L%/T®]. Likewise, one could represent the time depen-
dence ofe(t) in terms ofK(t) instead ofQ(t) and introduce

. instead ofp_ 2. However, the above form is preferred

The rate at which kinetic energy is dissipated to thermagg, the RT analysis, because it leads to a simpler form for the
fluctuations by the action of molecular viscosity may in energy balance equation for the RT mixing layer.

many circumstances be strongly dependent on the specific 14 corresponding self-similar form fa,(z,t) is
nature of the flow and on the particular form of the viscous o

stress tensor. The rate of dissipation of ene@{y,t) is de- E(z)=¢€,Of. (x), (2.59
noted £(z,t) and has dimensions ¢{M/L3)(L%/T3)], or, v
equivalently, density[L%/T®]. However, the dissipative
terms in the underlying physical systefe.g., the Navier-
Stokes equationspossesses an explicit dependence on vis-

cosity v, e.g., €(t)=€,9

E(z,t)=vE (z,1), (2.59

D. Energy dissipation rates in the mixing layer

where

t+tg] 2

to

Wo

W) |- (2.60

= EV,O

From simple dimensional considerations the dissipative

Whereé’y(z,t) has dimensions QT(M/Ls)(l/TZ)] Clearly, Iength scales for these flows have the form
assuming that, is self-similar will lead to a different scal-
ing than the assumption thé&tis self-similar. The latter as-
sumption is consistent with the Kolmogorov notion of high-
Reynolds-number, inertially driven turbulence wherein the
dissipation rate is set by the energy cascade, rather than théhere v, is a measure of the kinematic viscosity of the two
specific details of the viscous dissipation and viscous scalefluids. This length scale is analogous to the Kolmogorov dis-
That is, by assuming that is self-similar, we are making a sipation scale associated with the more usual hydrodynamic
tacit assumption that the dynamics of the turbulence are iturbulence. For the viscosity-independent scaling given by
some sense analogous to the more usual notions of turbigs. (2.56—(2.58), this length scale has a time dependence
lence. Physical consideration indicate that this “turbulence-of t~ (2?3 for the turbulencelike assumption antf? for
like” assumption may be accurate in the core of the mixingthe case of,. Thet'? scaling is consistent with a viscous
layers where strong vorticity is generated and where the flovgcaling[recall Eq.(2.18], which should be expected since it
is not strongly intermittent. At the outside edges of the mix-was constructed from a definition of dissipatidfqg. (2.54)]
ing layers this assumption is more questionable. We willthat explicitly referenced the viscosity as a physically rel-
make this assumption and determine the consequences fevant parameter.
the self-similarity. We will also discuss the consequences of Another length scale analogous to the Taylor microscale
assuming that,(z,t) is self-similar. may be constructed, e.g.,

The self-similar relationship fo£(z,t) is

3
PcVc

&(z,1)

1/4

: (2.61)

n(z,t)=

Q( Z, t) 1/2
Ve oo

N(z,t)= 2z

(2.62

P32, ) = £z 7(tH o) ~tp). (259
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This length scale has a time dependencé’dffor both the  z=0 corresponds to the center of the mixing layer. For pur-
turbulencelike assumption and the casefpf poses of the present calculation we will consider the total
Thus we see the emergence of three distinct length scalegptential energy over a domain that extends from a point

a viscous scaley, analogous to a Kolmogorov dissipative z= —z, below the lower edge=—W(t)/2 to a pointz
scale, an intermediate, viscous-dynamical séalenalogous = +z,; that is above the mixing-layer edge= +W(t)/2.

to the Taylor microscale, and a large integral sé&lg). The  For simplicity we have not distinguished between the
emergence of these various additional length scales is cotrubble-side and spike-side dynamics—such a distinction ap-
sistent with self-similarity. Of them, the viscous scale growthpears to require a specific model or theory of the RT mixing
rate depends on assumptions regarding the nature of the disyer. The potential energy then becomes

sipative processes. The time exponents of the viscous- .,
dynamical scale growth rate and of the large-scale growth _ rel

rate are independent of particular assumptions regarding the = fzrefp(z)g(erzref)dz
dissipative scales.

+Zref_ +Zref_
=J p(Z)gdegzrefﬁ p(z)dz. (3.1

~ Zref Zref

The KH and RT mixing layers have “external” sources of The planar-averaged density integrated over the volume
energy that are converted to kinetic energy and dissipated- z <z<z is
For the Rayleigh-Taylor case, this source is the potential en-
ergy of the fluids. For the Kelvin-Helmholtz case, the energy — [ e
source is the velocity difference across the mixing layer. pi_j p(2)dz 32
Each case will be analyzed separately.

Ill. ENERGY SOURCES

Zref

so that
A. The Rayleigh-Taylor mixing layer

tZret f_ _
A precise definition of the potential energy for the RT ()= le p(2)g(z+ Zref)dzzgﬁz p(2)Z dzt+ gZeips -
mixing layer requires a precise definition of the position of ref ref 3.3
the layer in the direction of the acceleration. A coordiraie '

now introduced in the direction of the acceleration whereinThe summed density may be written as

+Ze

o [-wo +W(H)/2 + 2,
o [ oz [ ez iz [,
2 —W(t)/2

FW()/2
—W(t)/2 FW(t)/2 + Zyef FW(H)/2
=p1f dZ+pcf dZ+p2f dZ+pCAJ C(z,t)dz
—Zyef —W(t)/2 FW()/2 —W(t)/2
=(p1Zrert Pzzref)+PcAW(t)|c,Oa (3.9

wherel , is thenth moment off(x),

+1/2
Ic,n:f /2fc(X)Xn dX- (3.5

If the fluids are incompressible and there is no net mass flux iz theection atz= * z,.;, then the total mass in the volume
in the range— z,.<z<1Zz, is constant in time. This is equivalent to a solid boundarg-=att z,.;, though we can consider the
circumstance wherein the walls arezmg— . This zero-flux condition requires that the zeroth moment §%), 1.,=0,
yielding

FEZ(P1+P2)Zref: 20Zet- (3.6

The doubly averaged densitye., the planar-averaged density averaged ovBL<Zz<2Z,y) iS

(PY= -=p,. (37

eref

Now consider the integral

066305-7



T. T. CLARK AND Y. ZHOU PHYSICAL REVIEW E 68, 066305 (2003

+Zpef

I, () =IL(t) — gZeips = gf p(z)zdz, (3.9

Zref
or, equivalently,

4

W(t)/2 W(t)/2 ref
—Hl(t) j p1Z dz+J pJAC(z,t)+1]z dz+f przdz
wW(t)/2

Ze +W(D)/2
—W(t)/2 +W(t)/2 + Zpef +W(t)/2
=p1f ZdZ+pcf ZdZ+p2f zdz+pcAf C(z,t)zdz
~Zyef —W(t)/2 +W(t)/2 —W(t)/2
1 ) 1
= 5 (P27 P Ziert PAWA(D) | 1o1= 7. 3.9

+z

Thus the total potential energy is ot —
MT(t):f p(z,HU,A(z,1)dz

~ Zref
(1) = gZetps +g(p — P1) Ziort PGAWA(D) | | 2 ~W(t)/2 1 \2
efP> 2 2 1) “ref c c,1l 4 ZJ pl(—EAu) dz
~ Zref

= peQ{ 225+ AZy— AWA(1)T ¢ 4}, (3.10

+FW(t)/2_ _
+f p(z,H)U,2(z,t)dz
—W(t)/2
where we have let

+ Zyet 1 2
+j p2<—Au) dz, (3.13
1 w2 \2
Tea=|=—lcal- 3.1
ot [4 C’l} @19 or, exploiting the self-similarity and letting,er= ¢/ W(t),
2
The total potential energy is dependent on the reference MT(t):(EAu> W) [p1+ p2]| Xrer— E)
positionz,. However, the rate of change of potential energy 2 2
is not +1/2
+ch1/2[Afc(X)+1]f3(X)dX}- (3.14
@ gAl, 2W(t) ( ) (3.12
dt ~ PeSfles ' ' This reduces to
f the value of th 1.
Determination of the value of the momeht; requires a M(t) = (—A ) W({[2xrer— 1]+ Al g2+ 42
specific model or theory of the RT flow. Such model- ! Pel 27 {12t ot o)
dependent details are beyond the scope of the present paper, 1 2 -
which merely seeks to explain the origin of the self-similar —Pc( ) W(t)H ref + Al g2+ 12
forms without resort to specific models or theories. 2 W(t)
1 2
= 2 W A1
B. The Kelvin-Helmholtz mixing layer p°(2 ) {22 T2W(D)}, (3.19

The energy source of the KH mixing layer is the mean
flow, which has infinite spatial extent. Recall that the free- wherel 2 is assumed to be positive:
stream vhelolcmes ar; anc:) U, and ztghe velocllltyddllcﬁereﬂce 1
across the layer is given E@.14). We will define the T _ 2
energy relativye to agframe ¥n0\(/4izng at the average velocity, le=[1=Alee—lie]=1~ f,l,z[AfC(X)Jrl]f“(X)dX'
i.e., we are in the frame whe®,=U,+U;=0. ThusU, (3.1
=+A /2 and U;=—A /2. The total spatially integrated
mean flow kinetic energyM+(t) may be constructed about As in the case of the Rayleigh-Taylor mixing-layer potential
some reference volume over the domairg,<z<+Zz4  €nergy, this definition of source energy gives infinityzas
which again encompasses the shear layeW(t)/2<z  —«. Again, the rate of change of the source energy is
< +W(t)/2 for any time of interest: bounded and independent of the choicezgf:
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2 dW(t) , dW(b)
= p T U ———
dt s dt

2
(3.17)

Again, the moment 2 must be determined from a particular
model or theory, which is beyond the scope and intent of this
paper.

dM+(t)
dt = 7 Pclu?

IV. ENERGY BALANCES

Now we note that the energy balance for the mixing lay-

M= |

PHYSICAL REVIEW E58, 066305 (2003

The mean kinetic energy integrated over the entire layer is

+ o

p(z,H)U%(z,t)dz

uj +e )
~heglQM) J [A(x)+ 11200 dW(D) )
0 —

2

UO
=pea- QW) (Alc2+12)
0

2

ers is Us
g = L7Q(t)W(t)(Alcuz+ l,2), (4.6)
d—{total energy={dissipation, °
t where
d + oo
g O+ M)+ ()} = = &(1), (4.1) l 2= Lc () fa00dy, 4.7)
wherell(t) is the total potential energyM1(t) is the total oo
mean flow energyQ+(t) is the total fluctuational energy, and |u2=f fﬁ()()d)(, 4.9
&7(t) is the total dissipation rate. The word “total” is again e
taken to mean “integrated over the domain.” The velocities d
will be constructed as mass-weightéak., Favre averages. an
Thus there will be a mean flow in the case of the RT mixing Qo] Y2
layer. uQ:[—} . (4.9
Pc
A. The energy balance for the Rayleigh-Taylor mixing layer The total energy balance may be written as
The kinetic energy integrated over all spa@e(t) in the
o ~ dW(t dW(t dQ(t
RT system is given by —2|c,1PcA9W(t)d—i)+[Q(t)d—E)+W(t) %)}
—+ oo
Qt=J Q(z,t)dz Uo\? I,
=] <z X IQ+(Z/TO> (A|cu2+|uz)}=— §—01,§Q3’2(t), (4.10
Q Pc
+ o
=Q(t)J’7 fo(x)d(W(t)x) or, equivalently,
_ dW(t) Q(t) dW(t) dQ(t)
=Q(HHW(t)l o, (4.2 _
© 2peAY gy QW) dt dt
where o
J t
oo —sz—%v(i)), (4.11
where
The dissipation rate integrated over the entire layer is )
1 Ug
+oo Jo=—|lot| —| (Alge+l , 4.1
Er(t)= f_ &z, t)dz 1.l U (Alew 1) (.42
+oo Ie
=e(t)f f(x)d(W(t) x) Je={loz— (4.13
o le1
Lol similarity
= e()W(D)! E:p%ianz(t), (4.4 The energy balance for self-similarity is
¢ A Wo(t+t0 Qo (t+to) ; 32 (H—to)
where g to | to %peto| to pIA,\ to )
I5=f f(x)dy. 4,
L fodx 9 hich simpifies to
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) e 4 would involve —ty—requiring that—ty,>0 and thus leading
AgW5— JUEWo— 7 Loldqg=0. (419  to the same conclusiohsThese two assumptions impi,
>0. In addition,

Solving for W, yields

1. U J. Agty
oo e

Jo>0 (4.24
1/2
nd

QO

(4.1

J.>0. (4.25
The above equation suggests th#=<[Ag] 1. This seems ) ] )
unreasonable—ifA or g vanishes, thet, should vanish. Thus we can identify the particular root needed as
However, the momentsJf,J.) and virtual origin data
(Qo,tg) may also be functions of the Atwood number. This
suggests thato<[ Ag]. Accordingly, we introduce a dimen-
sionless parameté&s, satisfying

1+1 <
2 GoJ3

1+

1/2
a(A)=1oG) }. (4.26)

This equation represents the functional form of the RT

Uq=2GtoAg, growth-rate parameter. If « is to be a universal constant at
a given Atwood number, the right side of this equation must
be independent of initial conditions—either parameter by pa-

12 rameter or collectively. Unfortunately, this self-similar analy-

] (4.17) sis does not indicate the values of any of the parameters—
these must be deduced from a specific theory, model, or
physical systeni.e., an experiment Values of ag deter-

The usual assumption regarding the RT mixing layer ismined experimentally are in the range of 0.05 to 0.07 at

that the bubbleglighter fluid penetrating heavy fluilgrow  modest Atwood numberA<1) and approach 0.5 as the At-
as wood number approaches 1. The are typically larger than
ag and their ratio is dependent on Atwood nump&d—23.

hg(t) = as(A)AQE, (4189 The results shown in Eq4.26 does rely on one crucial
assumption regarding turbulence—that the dissipation rate is
independent of the value of the viscosity and its self-similar
form is given by Eqs(2.56—(2.58. Had the form given by
Egs.(2.59 and(2.60 been used, the value fer would be
modified to

so that

1+1 i
2 GoJg

mhzzAg«ﬁJda[li

and spikes grow as
hs(t) = ag(A)Agt, (4.19

whereag and ag are functions of the Atwood number. The
width of the mixing layer then becomegV(t)=hg(t)

+hg(t), a(A)=2JoG3. (4.27)

W(t)=[ag(A)+ ag(A)JAgt?=2a(A)Agt?, (4.20 B. The energy balance for the Kelvin-Helmholtz mixing layer
For the KH shear flow, the source of energy is the mean

h
where flow and the potential energy is zero. The kinetic energy and
1 dissipation rates integrated over the entire space have the
a(A)= E[aB(A)Jr ag(A)]. (4.2)  same form as that for the RT mixing layer. The energy bal-
ance is thus
Comparing this to the self-similar form faW(t) in the limit B dW(t) dW(t) dQ(t)
of t— allows the identification —pc|u2U%sT+[Q(t) at +W(t) at }IQ
Wo=2a(A)AgH, (4.22 Lo
0'e
. =— 5 Q%) (4.28

for the case oft>ty,. The results of the analysis of the pc

growth rate now may be recast in termscof
Rewriting this, we have

WO . 1/2
a(A)= =J Gz:lr 1+ = —| |. dW(t) J dW(t dQ(t
2ngf 2 Golg —Ufs df L2 o) di me%
(4.23 Pe
It is reasonable to assume thetA) >0, i.e., that the mix- _ £Q3’2(t) (4.29
. . . . 3/2 1 -
ing layer grows in time. In addition, we have assumed that pe

to>0 [if ty had been negative, then the entire analysis would
be rewritten usingt—ty/(—ty;) and the equation above where
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lar to thez axig) are statistically homogeneous and thus may

Jo= ~I—Q, (4.30 be aptly represented in terms of Fourier integral transforms.
Iy2 For the inhomogeneous directi@anone choice is to expand
in the inhomogeneous directions using appropriate basis
I, functions(e.g., Hermite functions for bounded systems, and
Je=—. (4.30)  trigonometric functions or Jacobi polynomials for bounded
ly2 domaing. Another possibility is to assume a representation

L that describes the spectra of the correlations in terms of Fou-
The energy balance for the self-similarity is rier integral transforms of the two-point correlations in all
Qo Qo372 three directions at each point in the inhomogeneous domain.
e__Ufs}: —Jo — (4.32  Besnardet al. [26] used an inhomogeneous spectrum based
Pc Pec on a Wigner representation of the inhomogeneous spectrum
to produce a spectrum of the forB(x,k,t) wherek?®=k?
+k§+ kg. For the case of a single inhomogeneous direction
W, Qo [Qor/z Jo z, the form becomeE(z,k,t). Zhou[27] defined a spectrum

Wo

Ik

or

>—- (433  for amixing layer of the fornE(z,k,t) wherezis the inho-
{1-3Qo/pUts)} mogeneous direction perpendicular to the plane of the mix-
ing layer anck?=k2+ k2. Note that these spectral definitions
(that of Zhou and of Besnaret al) share the same funda-
mental dimensionality, as do their arguments, and thus share
Ro:Q—Oz, (4.34  the same self-similar functional forms.
pcUts The minimal assumption required to begin the analysis is
that the energy spectrug(z,k,t) has the dimensions of
S0 [L3T 2] so that upon integration over all wave numbers the
W 3.R3? 1.R3? result is a turbulent kinetic energy(z,t) with dimensions
Wo_ QMo U,.— Q™o A (4.35 [L2T?]. We will also seek a spectral representation for the
to [1-J.Rg] ' 2[1-J.Ry] " turbulent kinetic energy dissipation raf®(z,k,t). The di-
) mensions aréL3T~3]. The rationale for this representation
suggesting that of the dissipation rate is that viscosity 1/2) does not
3.R32 J.R32 scale by the same group as the velocify<(1) or accelera-
W(t)= Q™o Uio(t+tg) = Q0 ) (t+1o). tion (y=2_). Th_us we seek a representation that is indepen-
[1-JRo] °° 2[1-J.Re] 7" dent of viscosity. Thus we assume a cascadelike process
(4.36 wherein the energy is carried to small scales where it is even-
_ . o tually dissipated by viscosity at a rate and in a manner that is
Alternatively, if the dissipation were assumed to be of thejjependent of the actual numerical value of the viscosity.
form given by Eqs(2.59 and (2.60, then the above rela- Thjs s the picture that Kolmogorov describes for isotropic

to - Pcugs Pe

Now let

tionship would be modified to turbulence—we adopt it here out of convenience and in the
J-R3? hope that it is not an inaccurate conjecture for these flows.

W(t):JQRg/ZUfS(HtO): &Au(tﬂo)_ (4.37) We begin by noting that the simple form of the spectrum

2 describing isotropic turbulence is not appropriate for a

) ) ) strongly inhomogeneous system such as a mixing layer. We
One may infer from these equations tieRy<<1. A is || utilize the subgroup consistent with the analysis for
the case with the RT mixing-layer growth parameter, the SPew(t). Now we have

cific values of the parameters in this expression must be de-

termined from a specific model, theory, or experiment. Inde- 37 2E(z,k ) =E(rz,7 "k, 7(t+1g) —to). (5.1)
pendence from initial conditions again implies that the

various parameters in this expression must be independent of

initial conditions either parameter by parameter or collecDifferentiating with respect te- gives

tively. Note that experimental evidence suggests Watt,

is approximately 0.14-0.2[24,25. (3y—2) 73 IE(zk 1)

V. SELF-SIMILARITY OF INHOMOGENEOUS SPECTRA JE(z,k,t) (y—1 JE(z,k,t) B
=——yz7\¥ )——'ykT (y+1)
A. Scaling of energy spectra 9z K
The spectral representation of an inhomogeneous function JE(z,k,1)
is, to some extent, arbitrary. For the case of the RT mixing * ot (t+1to). (5.2)

layer and the KH shear layer, several choices are obvious.
For convenience, we will assume that the directions perpen-
dicular to the acceleration or shear gradiém., perpendicu- Setting7=1 gives the determining equation
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JE(z,k,t) JE(z,k,t)
(3y-2)E k)= e yp B

JE(z,k,t)

+T(t+t0). (5.3

For convenience, we divide through bi(t):

(3y—2) JE(z,k,t) yz JE(z,k,t) vk
——E(z,kt)= —
(t+to) dz  (t+tg) gk (t+tg)
JE(z,k,t) 5.4
+—(9t . (5.4
Characteristics ik are
dk(t) vk(t)
dt — (t+ty)’ .5
giving
t+ty| 7
k(t)=kq . (5.6
to
Characteristics iz are
dz(t)  yz(t)
at (i)’ 57
giving
t+tg]”
zZ(t)=2z, (5.8
to

Now, we divide the determining equation farby (t+tg),
and substituting the characteristic equations yields

(3y—2)

Tty E(zk,t)
_ 0E(zkt) dz(t) = JE(zk,t) dk(t) IE(zkt)
oz at T ok a T a
dE(z(1),k(1),1)
B TE— (5.9

Solving this along the characteristic gives

(3y=2)

(5.10

t
E(Z(t),k(t),t):Eo(ZOako)[To

Now apply the characteristic solutions fieft) andz(t):

t+tg| 7 t+to]”
E(Z(t).k(t),t)=E0(z(t) T} ,k(t)[?} )

(3y-2)

t+t,

to

(5.1)

Now define

PHYSICAL REVIEW E 68, 066305 (2003

t+to]”
and
t+tg|?7 2
K(t)=K0[ & (5.13

Note that the expression fét(t) is precisely the result that
would be produced by applying the same principle&{ad)
that were applied tW(t) and E(z,k,t), demonstrating the
consistency of the approach. The self-similar form of
E(zk,t) may now be rewritten as

E(z,k,t)=K(OW(t)f(x,&), (5.19
where
z
X= W) (5.19
E=kW(t), (5.16
and
f(x, &) =(KoWp) “"Eq(xWo,&/Lo). (5.17
We now will constrainf(y,&) as follows:
f:f(o,g)d§=1, (5.18

so that
f "E(Ok,t)dk=K(1) f H0de=K(1), (519
0 0

that is,K(t) is the kinetic energy of the mixing layer at the
midplanez=0.

The physical acceleratiamimplies the same constraint on
v as shown for the model diV(t) in the previous section.
For the RT mixing layer ¢=2) W(t) andK(t) grow ast?.
Forothe KH mixing layer ¢=1) W grows ag andK behaves
ast”.

Now define the turbulent kinetic energy integrated across
the mixing layer as

QT(t):fj:f:E(z,k,t)dk dz

— K(H)W(t)I,
:KO%(;) W(t)l, (5.20

where
If=f_lf:f()(,§)d§dx. (5.21
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If it is assumed that the two-point correlation functions of the t+ty] "7 t+to]”
velocity field possess algebraic tails at large separations, then 7 (z(t),k(t),t)="To| z(t) | T
the infrared(low wave numberportion of the spectrum may 0 0
be presumed to be a power lawkn t+t] 37
X = (5.28
lim E(z,k,t)=Eq(z,H)K", (5.22 0
k—0
Then the self-similar form can be rewritten as
whereE, has dimensions df3*"T2. Then we may write
T(z k) =K¥A)f(x,6). (5.29

7(3+Nn)y—2Ex(X,t)=Eg(77z, 7(t+1g) —tg). (5.23
We will identify the dissipatiore(z,t) with the energy trans-
Solving this in the same manner as was doneH¢z, k,t) fer:
yields
o K3/2(t) .
(3+n)y—2 e(z,t)—fO T(z,k,t)dk—m . fr(x, &)dé.

+1
. fe,(x).  (5.24

Eo(x,t):eo (53@

Note that for simple(isotropic or anisotropichomogeneous  Note that the energy transfer is presumed to be integrable on
turbulence the large scales are assumed to be invd@8ht  this interval. In practical circumstances, we may envision a
This assumption implies that (3n)y—2=0. For decaying large-wave-number region where the transfer deposits energy
homogeneous turbulence this relationship represents a cof viscous dissipation. In this circumstance, the transfer van-
straint ony andn and was exploited by Clark and Zemach to ishes at higtk and the integral is finite. For convenience, we
determine the decay laws of isotropic turbulence. For thejefine

case of mixing layers, the only possible infrared scaling that

is consistent with both the permanence of large scales and - K32(t) [ K372(t)
the accelerative scaling=2 is n=—2. The case oh= e(O,t)=f T(O,k,t)dkzw f(0,£)dé= WD
— 2 was identified previously by Inogam$29,30 and more 0 (1) Jo ()
recently in work by Dimont¢31—34]. However, the value of (5.3)
n= —2 yields spectra that are divergent at small wavenum-
bers, and thus may indicate that the largest scales are n8t
invariant, but grow with the mixing layer in a prescribed
manner dependent on the scaling exporent ®
€= fo f1(0,6)d¢. (5.32
B. Inhomogeneous dissipation rateD(z,k,t)
We assume that an energy transfer spectimk,t) (i.e.,  For the case of vanishing viscositye., very high Reynolds
a function that transfers energy to some dissipative “rainge” numbey we anticipate that remains finite—this assumption is
has dimensions af 3T 3, giving consistent with the requirement that the dissipation remains
finite and nonzero as the viscosity vanishes.
T3 ITT(z,k, ) =T (772,77 K, 7(t+1g) — to). For convenience, we will define
(5.29
K312
Following the same procedure as establishedEx, k,t), Lo=—0, (5.33
€0
(3y—3) dT(z,k,t) yz aT(z,k,t) vk
WT(Z,K = 97 (t+1o) ok (T+1o) so that the dissipation at the center of the mixing layer is
d7(z,k,t) - K32t
+ T (526) e(O,t) = J T(O,k,t)dk: L( ) ) (534)
0 0
The characteristics are unchanged, yielding a solution alon\%h
the characteristic of the form ere
t+to (3y=3) 1 ke
Tt kO).D=T20 k)| t—| - (529 L fo h(0.6)dé. (-39
0
Now apply the characteristic solutions floft) andz(t): The dissipation across the entire domain is now
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4o (oo (1+n)y+2p — _
g(t): f f G(Z,t)dkdz T 4 ¢0(Z,t) ¢0(772,T(t+t0) to) (54@
—» Jo

This yields
+ oo o)
=K3’2(t)J_ fo h(x,&)dédy bo(2,1) =By (W (D) o(x), (5.47)
=K3(t)] . (5.36 where
h t+to|%8

+ o [’}
Ih= J f h(x,§)dédy. (5.37) A reasonable expectation is constancy in time of the fluc-

— % 0

tuating density correlation at the center of the mixing layer,
This is essentially the same result that one would achieve bg;nplymg that$=0, and thaipy(z,t) behaves as

simply stating that the total dissipation integrated across the bo(z,) =B, WL (1), (5.49
layer has dimensions ¢f.3/T3] and pursued a similar analy- ’ ¢
sis. The dissipation of densitfor scalay variancee,,, has dimen-

sions ofp?/T and thus

C. Density fluctuation spectra

. . . . 26-1 ’ )= ’ Y t—ty) +t 55
We present the following by first noting that we will as- T ey (@)= (M2t Hl), (550

sume the following scaling for the density: yielding
p, :fp (53& (96pr (96!,!
(2B—1)e, =yx———+(t+tg) ——. (5.5)
and restricted to 9z at
(=1, (5.39  The solution of this has the form
The self-similar form for the inhomogeneous spectrum of the e (zt)=e t+1o (2,371)]‘ (x) (5.52
fluctuating density-density correlation is P POt e\ X0 :
?,(Z,k,)=B(OW(D T 4(x,§), (5.40 or, more conveniently,
where _dB(t)
Ep,(Z,'[)= Ep’,O Tfépl()(). (553
t+1tq]2#
B(t)=By . (5.41
0 D. Time-scale statistics
and Consider a spectral time scale with dimensif0E]:
* a0(z,k,t) vz  90(z,k,t) vk
f4(0,6)dé=1. 54 =
fo 2(0£)d¢ (542 (y+1) oz k1) gz t+ty ok t+t
The variations in density variance across the layer are n d0(z,k,t) (5.54
ot ’ ‘
b(z,t)=B(t)fs(x), (5.43
so that
where
- 0(z(t) k(t t)—e[tﬂorl 55
W00 = | fuxede (5.44 A0 K0= 00 (559
. ) . ~and
Consider the infrared spectrum of the density-correlation
spectrum, and assume a power-law spectrum wherein the W2(t) |
exponentn is independent of (as was done for the energy 0z k) =| 2y %) fo(x.6). (5.56
spectrun: :
. Let
lim ¢,(z,k,t)— ¢o(z,1)k". (5.45
k—0 W, ]
0 :{ > (5.57)
— _
Scaling of¢o(z,t) implies that o 1K§?
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and

S0
Integrating over all wave numbers yields

Sz =0(1) J:fe(x,é)d§=®(t)fe(x),

where we have again chosen the normalization

f:fa<o,§>d§=1.

Note that the spectrally integrated time scale grows as a li

ear function of time independent of the valueof

E. Scaling of turbulent viscositydiffusion

(5.58

(5.59

(5.60

(5.6

Consider a spectral diffusivity with dimensiopis®T 1],

N av(z,k,t) ’ (5.62
ot
o)
v(2() k(1) )=, tfot‘)ry_l (5.63
and
v(z k) =KM(OWH1)Y ,(x, £). (5.64
For the particular element=2 we will set
vo=KAW,, (5.69
so that
b(t) = | 2 i (5.66
to
and
v(z,k,)=v(OW(DY,(x, ). (5.67)
Integrating over all wave numbers yields
Wz 0= w0 [ ValxOdE=rOY (0. (569

n_
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So the spectrally integrated turbulent viscosity grows as a
cubic function of time.

VI. CONCLUSIONS

The fundamental mathematical basis for the self-
similarity of KH and RT mixing layers has been demon-
strated using a simplified group-theoretic approach. The fun-
damental assumption inherent in the assertion of full self-
similarity is that the system evolves to a solution that is
invariant under an appropriate subgroup of the full group of
transformations under which the dynamics of the system are
invariant. Pragmatically, this subgroup has the property that
the “scaled” function of unscaled variables is equal to the
unscaled function of scaled variables. This approach does not
demonstrate that a real physical system, e.g., an experiment,
or a mathematical modéé.g., Navier-Stokes or a turbulence
mode) will tend toward such a state. Rather, it elucidates the
features of such a state, whether or not that state is physically
attainable.

The linear-in-time growth rate of the KH mixing layer is
shown to be a consequence of the assumption that the scaling
subgroup leaves the fundamental driving mechanism of the
layer, the velocity difference, invariant. Likewise, the
quadratic-in-time growth rate of the RT layer is a conse-
quence of the assumption that the acceleration is invariant.
The functional dependencies of the growth-rate coefficients
were obtained by exploiting the functional representations
suggested by the simplified group-theoretic analysis as well
as a simple energy balance. These results do not demonstrate
that the growth-rate coefficiente.g., a(At) for the RT
layer] are “universal’—i.e., identical for different realiza-
tions of similar flow configurations. Such detailed numerical
results require the use of a specific theory or model, and the
universality of the coefficients may very well be model de-
pendent. It is hoped that the relationships put forth in this
paper will provide additional objective tests for full self-
similarity of the Rayleigh-Taylor and Kelvin-Helmholtz mix-
ing layers.
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