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Self-similarity of two flows induced by instabilities
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The implications of full self-similarity of the Rayleigh-Taylor mixing layer and the Kelvin-Helmholtz shear
layer are examined using a simplified group-theoretic analysis. The constraints on the behavior and evolution
of these layers imposed by rigorous self-similarity are identified, and equations are constructed for the growth
rate of these layers based on a total energy balance. This analysis does not prove that such flows will become
self-similar. Rather, the analysis demonstrates the behaviors that would arise if these flows were to become
fully self-similar.
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I. INTRODUCTION AND BACKGROUND ANALYSIS

Flows induced by instabilities are found in many en
neering and astrophysical circumstances. Specifically, the
stabilities induced by acceleration~or gravity! and shears
have attracted much attention and carry the well kno
names of Rayleigh-Taylor~RT! @1,2# and Kelvin-Helmholtz
~KH! instabilities@3#. While the initial linear, nonlinear, and
transient processes are complicated, it is widely suspe
that at late time the RT and KH flows will relax toward
self-similar statistical state where the dominant length sc
i.e., the mixing-layer width is growing as an algebraic fun
tion in time. The late-time scaling is typically based o
physical arguments and experimental and numerical res
appear to support the self-similarity assumption, at least in
far as the evolution of the mixing-layer width is concerne
More precisely, the fundamental assumption of se
similarity is that a RT or KH configuration starting from a
arbitrary initial state will relax toward a solution of the ev
lution equations that is invariant under an appropriate sy
metry group.

The purpose of this paper is not to prove or disprove
actual existence of such a self-similar state for a particu
physical system or for a mathematical model of such a s
tem. Likewise, our purpose is not to demonstrate the att
ment of a self-similar state in experiments or computatio
Rather, our goal is to elucidate the nature of a fully se
similar state for such systems. With this limited goal in min
it is still useful to note that the expectation is that the phy
cal system~e.g., a RT or KH mixing layer! would tend to-
ward the self-similar state at late times, after an initial tra
sient time in which the correlations of fluctuating quantiti
become established. The attainment of late-time solutio
either numerically or experimentally, is a daunting task
processes which are growing as power laws in time. De
mining whether a system failed to achieve self-similarity d
to simulation times that are too short, simulation sizes t
are too small, or for some fundamental physical cause
quires understanding the nature of the anticipated self-sim
state. Our goal is to describe a self-similar state consis
with the mathematical requirements of self-similarity a
1063-651X/2003/68~6!/066305~16!/$20.00 68 0663
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consistent with the physical processes active in these flo
In this paper, we turn our attention to investigating t

late-time, highly chaotic state that occurs when the flow fi
is induced by Rayleigh-Taylor and Kelvin-Helmholtz inst
bilities. Both flows are characterized as inhomogeneous
one dimension and homogeneous in the remaining two,
both possess a persistent energy source term—i.e., the m
shear in the KH layer, and the potential energy in the
layer. Our primary objective is to determine the time-scali
laws of various statistical parameters that may arise in
study and modeling of these systems. A secondary goal
determine the functional structure and dependencies of
growth rates of these flows. The methodology is a gener
zation of the approach recently applied to isotropic turb
lence @4#. In addition, we will exploit the detailed energ
balance equation among kinetic energy, potential energy,
their dissipation rates to construct expressions for the gro
rate of these mixing layers, detailing the functional form a
dependencies of the coefficients. The consequences of ‘
bulencelike’’ assumptions for the dissipation rate will b
demonstrated. Furthermore, the late-time scaling prope
of other important measurements are obtained.

The term ‘‘turbulence’’ in the context of the RT and KH
mixing layers warrants explanation. For the circumstance
a multimodal initial interface perturbation, the RT mixin
layer grows, after the initial ‘‘linear’’ growth regime into a
chaotic flow of interacting ‘‘fingers’’ or ‘‘mushrooms’’ of
penetrating fluids@5,6#. At late times, as the kinetic energy o
the flow grows the flow in the core of the mixing layer look
increasingly chaotic. However, at the edges of the mix
layer the layer may still be characterized by relatively is
lated fingers of fluid penetrating a relatively quiescent flu
field and thus may not appear to be classically turbulent. T
distinction of a chaotic core flow and a strongly ‘‘intermi
tent’’ edge flow also pertains to the KH mixing layer. R
cently, some researchers have attempted to define a ‘‘mix
transition’’ at which the fine scales typically associated w
high-Reynolds-number turbulent flows emerge@7#. The
emergence of these fine scales may mark the broadb
spectrum of turbulence dominated by inertial range dyna
ics. In the context of the RT and KH mixing layers, th
©2003 The American Physical Society05-1
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T. T. CLARK AND Y. ZHOU PHYSICAL REVIEW E 68, 066305 ~2003!
distinction between the dynamics of the core flow versus
dynamics of the edges suggests that this emergence of
scales may occur at different times for different locatio
during the evolution of the flow. The present analysis do
not explicitly pertain to the existence of an inertial range,
the lack of one. However, an assumption regarding the na
of the dissipative processes is made, and will be discusse
detail. The specific changes in scaling behavior that may
may not occur when inertially driven dissipative proces
dominate over simple viscous processes will be address

The self-similar growth of chaotic RT mixing layers an
KH shear layers has been studied over the past 30 ye
beginning with the seminal work of Taylor@2#. Various the-
oretical model descriptions, computational simulations a
experiments have been conducted. The physical picture
has arisen is described by Sharp@5# and Youngs@6#. In the
present circumstance, an initially randomly perturbed in
face grows, first through an early stage which yields to l
earized analyses, and later through a late-time, highly c
otic, nonlinear state. In the case of the RT mixing layer,
driving energy is the potential energy of the unstably str
fied density field. In the case of the KH mixing layer, th
driving force is the difference in velocities across the mixi
layer.

Our approach to studying this evolutionary picture is
exploit the implications of self-similarity of these highly ch
otic fluid layers. Decaying isotropic turbulence was stud
by Clark and Zemach@4# using spectral closure models and
simple group-theoretic approach. Although the resu
achieved were not new, the approach used demonstrated
these previously reported results were consistent with
underlying dimensionality and symmetries of the functio
studied, rather than a unique product of specific phys
models or assumptions of the previous analyses. We
apply this same group-theoretic approach to these two sim
mixing layers. First we will demonstrate the application
these ideas to the evolution of the mixing-layer widths. N
we will apply them to some fundamental ‘‘turbulence’’ qua
tities in these flows. We will then use these results to c
struct energy balances from which we will determine t
governing equations governing the self-similar growth r
coefficients for these layers if a self-similar state is achiev
Finally, we will apply the methodology to investigate th
self-similarity of an inhomogeneous spectrum. The res
will not prove the existence of a self-similar turbule
growth. Instead, they will describe the behavior of a se
similar flow if such a flow were to exist in the context of R
and KH mixing layers. As such, these results will mere
provide a basis for objective comparisons of real flows t
postulated mathematically self-similar turbulent flow.

II. SELF-SIMILARITY OF THE MIXING LAYER

It is widely believed that many simple turbulent flow
such as the RT and KH mixing layers evolve toward se
similarity. Youngs@6# exploited a self-similar modal growth
of the RT interface to arrive at the now famous formula
mixing layer growth formula;

W~ t !5aAgt2. ~2.1!
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It must be noted that even earlier Sharp and Wheeler@8# ~see
also Sharp@5#! constructed a bubble amalgamation model
the RT that predicted an average velocity of bubble rise,vav,
of

vav~ t !5k1gt, ~2.2!

where

k1}
1

20
;

1

100
. ~2.3!

The coefficientk1 is related to Youngsa parameter for the
bubble side of the layer and the Atwood number, e.g.,k1
52abubbleA.

Attempts have been made to assess the degree of
similarity of numerical simulations, e.g.,@6,9,10#, and a va-
riety of models of RT mixing layers, e.g.,@11–14#.

Another approach is to substitute dimensionless functi
in conjunction with dimensional time-dependent scaling fa
tors into the governing equations, and then determining
necessary consistency relations for self-similarity. Ristorc
and Clark@15# analyzed the second-moment equations of
Navier-Stokes equations in the Boussinesq limit for t
Rayleigh-Taylor mixing layer, and compared the resulta
scalings to direct numerical simulations. An interesting e
tension of this approach was exploited by Chenet al. @16# for
compressible Rayleigh-Taylor mixing layers and by Che
Glimm, and Sharp@17# in the context of a bubble merge
model. In these works, the scaling group was presumed,
equations were subjected to the scalings, and fixed-p
analyses were carried out on the scaled system. This
proven to be a powerful tool, and provides further motivati
for the present effort to clarify the mathematical basis of
appropriate scaling groups. Of course the KH mixing lay
will yield to a similar analysis.

The intention of the present paper is to provide a m
general self-similar description of self-similar mixing laye
that is not dependent upon a particular mathematical mo
of the flow. With this goal in mind, it is expected that th
results of the present analysis should agree with previ
analysis if the underlying mathematical models used in p
vious analyses do not violate the underlying mathemat
symmetries. The more general approach is to exploit the
derlying scaling groups that define the self-similarity. Th
latter method owes much to the work of Lie, although t
present use of this approach is greatly limited for utilitari
purposes. It requires no detailed physical model, or gove
ing equation, relying instead on the consequences of s
similarity of the functional forms. The underlying viewpoin
is that the physical system acts dynamically upon an ini
state, and under this dynamical action the system relaxe
an invariant state. By invariant state, we mean a state th
invariant under appropriate classes of subgroups of the
group of space-time symmetries. This approach is descr
more fully by Clark and Zemach@4# and the interested reade
is directed to that paper for a more complete description
the approach. To demonstrate the approach, we will cons
the case of the mixing layer widthW(t). After this brief
5-2
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SELF-SIMILARITY OF TWO FLOWS INDUCED BY . . . PHYSICAL REVIEW E68, 066305 ~2003!
demonstration, we will consider the cases of inhomogene
energy spectra, density fluctuation spectra, and other sta
cal characterizations of the flow.

A. Self-similar growth of the mixing
layer—a detailed calculation

In order to determine the self-similar form of th
Rayleigh-Taylor mixing layer or the Kelvin-Helmholtz she
layer, we begin by reviewing the scaling group exploited
Clark and Zemach@4# for the case of isotropic turbulence
Indeed, this group yields a power-law behavior in time,
observed for RT mixing layers and KH shear layers. Th
scalings are as follows: for a length scale,l scales tol̂ by

l̂ 5l l , ~2.4!

and for a time scale,t scales tot̂ by

t̂5t~ t1t0!2t0 . ~2.5!

Note that we have included a translation in timet0 and a
rescaling of timet and lengthl. Self-similarity assumes

lW~ t !5W„t~ t1t0!2t0…. ~2.6!

We anticipate that the solutions will be in terms of pow
laws ~this may be deduced from a classical similarity ana
sis, and is also the generally accepted notion of the beha
of the RT and KH mixing layers!. For this case we will
restrict the group as follows:

tg5l, ~2.7!

so

tgW~ t !5W„t~ t1t0!2t0…. ~2.8!

Differentiating with respect tot yields

gt~g21!W~ t !5
dW~ t !

dt
~ t1t0!. ~2.9!

Now sett51 to give the determining equation

gW~ t !5
dW~ t !

dt
~ t1t0!. ~2.10!

The solution of this ordinary differential equation is

W~ t !5W0F t1t0

t0
Gg

, ~2.11!

wheret0 may be positive or negative. It is assumed that t
form applies for the caset@t0 . We now may restrict the
subgroup dependent on the relevant physical paramete
the given flow field. For the case of a Rayleigh-Taylor m
ing layer, the dominating physical parameter is assume
be accelerationg, having dimensions of@LT22#. Under the
scaling group above, we find that the acceleration scales

ĝ5tg22g, ~2.12!
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which is invariant ifg52. We conclude that a self-simila
theory for W(t) that has a physical parameter with the d
mensionality of acceleration will have the form

W~ t !5W0F t1t0

t0
G2

. ~2.13!

If the dominant physical parameter has dimensions of a
locity @LT21#, e.g., the KH shear layer where the fre
stream velocities areU1 andU2 , and the velocity difference
across the layer

Du5U22U1 ~2.14!

is the dominant parameter, then we require that someth
with dimensions of velocity scale as

D̂u5tg21Du , ~2.15!

yielding g51, or a relationship linear in time:

W~ t !5W0F t1t0

t0
G . ~2.16!

If viscosity is the dominant physical constant, then w
find the group element from

n̂5t2g21n, ~2.17!

giving g51/2 and

W~ t !5W0F t1t0

t0
G1/2

. ~2.18!

The same result applies if diffusivity is the dominant phy
cal constant. If a dominant fixed length scaleL is dynami-
cally important, e.g., the size of a test vessel, or a fix
length scale in a theory or model, then

L̂5tgL, ~2.19!

giving g50 and

W~ t !5W0 . ~2.20!

These results are not based upon any assertion rega
the detailed physical characteristics of the flows~e.g., turbu-
lent, laminar, or other!. Rather, they represent a mathematic
statement regarding the form of self-similarity under a p
tulated physical constraint such as acceleration. Indeed
can be seen from these results, the subgroup element
reconciles acceleration (g52) is inconsistent with the sub
group element that reconciles viscosity (g51/2) or that
which reconciles a velocity difference (g51). A real flow
possesses both viscosity and an acceleration for the cas
the RT mixing layer, or a velocity difference for the KH
mixing layer. This implies that a concise single-parame
scaling group cannot describe all scales of the flow. This
perhaps relevant to the observations of Dimotakis@7# that the
fine-scale ‘‘turbulent’’ mixing scales emerge at a speci
Reynolds number, and are not a gradual manifestation
5-3
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T. T. CLARK AND Y. ZHOU PHYSICAL REVIEW E 68, 066305 ~2003!
increasing Reynolds number. Likewise, Clark and Zem
demonstrated that the scaling group elements that recon
the largest scales of an isotropic turbulence were not ne
sarily consistent with those applicable to the dissipat
scales. For the present paper, we will restrict our attentio
the accelerative case~RT with g52) and the velocity-
difference case~KH with g51). These group elements e
fectively exclude self-similarity of the viscous scales in
flow field. That is to say, the presence of viscosity in the K
shear layer or RT mixing layer may preclude absolute s
similarity in the same way that it excludes full sel
preservation in the case of isotropic turbulence.

B. Self-similarity of density across the layer

The mean~planar-averaged! densityr̄(z,t) across the RT
or KH mixing layers is bounded byr2 ~the heavy fluid! and
r1 ~the light fluid! for the case of incompressible flow. No
that the density has units of mass per unit volume, e
@M /L3#. Assuming that

M̂5tbM , ~2.21!

we have

tb23gr̄~z,t !5 r̄„tgz,t~ t1t0!2t0…. ~2.22!

An alternative approach would be to assign the densit
scaling parameter, sayb05b23g. This present approach t
determining the self-similar forms would yield a similar co
clusion for these incompressible flows. Sincer̄ is a function
of two variables@unlike W(t)], the details of the solution
will be presented for clarity. First differentiate with respect
t and sett51, and divide through byt1t0 :

b23g

t1t0
r̄5

gz

t1t0

]r̄

]z
1

]r̄

]t
. ~2.23!

The characteristic equation forz is

dz~ t !

dt
5

gz

t1t0
, ~2.24!

with the solution

z~ t !5z0F t1t0

t0
Gg

. ~2.25!

Substituting gives

b23g

t1t0
r̄5

dz

dt

]r̄

]z
1

]r̄

]t
5

D r̄

Dt
. ~2.26!

The solution is

r̄„z~ t !,t…5 r̄0~z0!F t1t0

t0
Gb23g

5 r̄0S z~ t !F t1t0

t0
G2gD F t1t0

t0
Gb23g

, ~2.27!
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or equivalently

r̄~z,t !5 f rS z

W~ t ! D F t1t0

t0
Gb23g

5 f r~x!F t1t0

t0
Gb23g

,

~2.28!

where

x5
z

W~ t !
. ~2.29!

Clearly, the function varies fromr1 on one side of the mix-
ing layer tor2 on the other. These densities are constan
time and imply thatb05b23g50. This implies that the
mass in a volume scales with the volume and is a corollar
the incompressibility assumption. So the form for the dens
is

r̄~z,t !5 f r~x!. ~2.30!

The density field may also be represented as a conce
tion function C(z,t) that is dimensionless and varies fro
21 to 11 across the layer,

r̄~z,t !5rc@AC~z,t !11#, ~2.31!

where

rc5
1

2
~r11r2! ~2.32!

andA is the Atwood number

A5
r22r1

r21r1
5

1

2

Dr

rc
. ~2.33!

The concentration function is dimensionless, and a s
similar solution would satisfy

C~z,t !5 f c~x!, ~2.34!

with no explicit time dependence. The similarity functio
may be assumed to vary from21 to 11. The self-similar
forms of the density and concentration are related:

f r~x!5rc@A fc~x!11#. ~2.35!

From the fact thatb050, one can infer that single-poin
moments of the fluctuating density will yield similar result
e.g.,

r8n~z,t !5 f r8,n~x!. ~2.36!

These results apply to both incompressible KH and RT m
ing layers and are a consequence of the assertion of
similarity and the nature of the kinetic energy dissipati
mechanism. No particular model or theory has been invok

C. Scaling of velocity and kinetic energy in the mixing layer

Since the RT mixing layer~and in some circumstances th
KH layer! possesses fluids of different densities, the ma
5-4
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weighted averages seem most appropriate for describing
energy of the flow. The mass-weighted average velocity

Ũ i5
rui

r̄
, ~2.37!

where the overbar again denotes a planar average. Note
we have chosen a single-field representation of the velo
and indices denote components of the vector.~A multifield
velocity description could be analyzed as well, but since
are concerned only with the dimensionality of the functio
the results would be essentially the same.! The fluctuation
about the average is

ui95Ũ i2ui . ~2.38!

If the density is constant across the layer~for example, in the
KH mixing layer! the mass-weighted description is equiv
lent to the simple planar-averaged description. For the
compressible RT mixing layer the~planar-averaged! mean
velocity is zero. This is because the netvolumetricflux of
heavy fluid into light must equal the netvolumetricflux of
light fluid into heavy to satisfy the ansatz of incompressib
ity. These decompositions are not restricted to a ‘‘turbule
flow state—they may also be employed without ambigu
for stochastic flows at low Reynolds number.

The similarity analysis indicates that the characteris
speedU(z,t) for the KH or RT mixing layer has the self
similar form

U~z,t !5U~ t ! f u~x!, ~2.39!

where

U~ t !5U0F t1t0

t0
Gg21

, ~2.40!

independent of whether they are mass-weighted average
simple planar averages.

For the KH mixing layer,g51 implies a self-similar form
with an amplitudeU(t) that is constant in time. The functio
f u(x) is dimensionless and varies from21 to 11 across the
layer. The velocity difference across the mixing layer isDU
5U12U2. Assume a frame whereinU152U25U f s ,
where U f s is the free-stream velocity. The mean veloc
within the KH mixing layer is then

Ux~z,t !5
1

2
Du f u~x!, ~2.41!

whereDU is again the difference of the free-stream velo
ties.

For the RT mixing layer,g52 gives linear growth in time
of the characteristic velocity. If the characteristic veloc
were assumed to be a simple planar-averaged velocity,
U050 in the self-similar form. The functionf u(x) is less
than zero and approaches 0 asz→6`. The normalization is
taken thatf u(0)521 so thatU(t) is positive and equal to
the absolute value of the mass-weighted velocity at the c
ter of the mixing layer.
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The total energy of fluctuations about the mass-weigh
average is

Q~z,t !5
1

2
r~x,t !un9~x,t !un9~x,t !, ~2.42!

where a summation is implied over repeated indices. S
similarity imposes the condition that

tb012g22Q~z,t !5Q„tgz,t~ t1t0!2t0…. ~2.43!

However, the analysis of the density field indicated thatb0
50, from which one may infer that

Q~z,t !5Q~ t ! f Q~x!, ~2.44!

where

Q~ t !5Q0F t1t0

t0
G2g22

. ~2.45!

The functionf Q(x) has the normalizationf Q(0)51, so that
Q(0,t)5Q(t). This suggests that for the mass-weighted a
erage characteristic velocity the time dependence ofU(t)
may be conveniently rewritten as

U~ t !5U0FQ~ t !

Q0
G1/2

. ~2.46!

Such a form was also postulated by Sharp and co-work
@16#. The present result verifies that such a choice is a nat
expression of the similarity of the flow.

The moments of the velocity fluctuations about t
planar-averaged velocity field can be represented as follo
The specific fluctuational energy~fluctuational energy per
unit mass!

K~z,t !5
1

2
un8~x,t !un8~x,t ! ~2.47!

has the same scaling group asQ(z,t) ~so long asb050),
and the analysis yields

K~z,t !5K~ t ! f K~x!, ~2.48!

where

K~ t !5K0F t1t0

t0
G2g22

, ~2.49!

and the functionf K(x) has the normalizationf K(0)51, so
that K(0,t)5K(t). Now consider

kn~z,t !5^@ul8~x,y,z,t !ul8~x,y,z,t !#n/2&, ~2.50!

whereK(z,t)5k2(t). The physical dimensionality ofkn is
(L/T)n. The determining equation forkn is

n~g21!

~ t1t0!
kn~z,t !5

]kn~z,t !

]z

gz

~ t1t0!
1

]kn~z,t !

]z
.

~2.51!
5-5



e
fi
c

RT
is

n
o

ow
o

a
in
ci
u

vis

-
-
h-
h

le

e
rb
ce
ng
o
ix
i

s
o

a-

ri-
rate

n-

d
the

ive

o
is-
mic
by
ce

s
it

el-

ale

T. T. CLARK AND Y. ZHOU PHYSICAL REVIEW E 68, 066305 ~2003!
The solution is

kn~z,t !5Kn/2~ t ! f k,n~x! ~2.52!

with normalization

f k,n~0!5
kn~0,t !

Kn/2~ t !
~2.53!

at any timet. This result suggests that the skewness, hyp
skewnesses, flatness, and hyperflatnesses of the velocity
become constant in time. This result is presented as a spe
test of self-similarity that can be tested in simulations of
and KH flows. ~Our own computations suggest that this
violated at the edges of the mixing layer.!

The results presented in this subsection are conseque
of the assumption of self-similarity and are independent
any assertions regarding the turbulent nature of the fl
Similar results have been implied in the analyses of tw
phase flow models by Chenet al. @12#, by Glimm, Saltz, and
Sharp@18#, and by others.

D. Energy dissipation rates in the mixing layer

The rate at which kinetic energy is dissipated to therm
fluctuations by the action of molecular viscosity may
many circumstances be strongly dependent on the spe
nature of the flow and on the particular form of the visco
stress tensor. The rate of dissipation of energyQ(z,t) is de-
noted E(z,t) and has dimensions of@(M /L3)(L2/T3)#, or,
equivalently, density3@L2/T3#. However, the dissipative
terms in the underlying physical system~e.g., the Navier-
Stokes equations! possesses an explicit dependence on
cosity n, e.g.,

E~z,t !5nEn~z,t !, ~2.54!

whereEn(z,t) has dimensions of@(M /L3)(1/T2)#. Clearly,
assuming thatEn is self-similar will lead to a different scal
ing than the assumption thatE is self-similar. The latter as
sumption is consistent with the Kolmogorov notion of hig
Reynolds-number, inertially driven turbulence wherein t
dissipation rate is set by the energy cascade, rather than
specific details of the viscous dissipation and viscous sca
That is, by assuming thatE is self-similar, we are making a
tacit assumption that the dynamics of the turbulence ar
some sense analogous to the more usual notions of tu
lence. Physical consideration indicate that this ‘‘turbulen
like’’ assumption may be accurate in the core of the mixi
layers where strong vorticity is generated and where the fl
is not strongly intermittent. At the outside edges of the m
ing layers this assumption is more questionable. We w
make this assumption and determine the consequence
the self-similarity. We will also discuss the consequences
assuming thatEn(z,t) is self-similar.

The self-similar relationship forE(z,t) is

tb012g23E~z,t !5E„tgz,t~ t1t0!2t0…. ~2.55!
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Again, we assert thatb050, and pursue an analysis equiv
lent to the analysis performed forr̄ to yield

E~z,t !5e~ t ! f e~x!, ~2.56!

where the dimensional, time-dependent functione(t) may be
written as

e~ t !5e0F t1t0

t0
G2g23

5e0F W0

Q0
3/2G FQ3/2~ t !

W~ t ! G5
z0

rc
1/2

Q3/2~ t !

W~ t !
.

~2.57!

Note that the parameterz0 is a constant. The factorrc
1/2 is

introduced to makez0 dimensionless:

z05e0FW0rc
1/2

Q0
3/2 G . ~2.58!

This contrivance is awkward and might be avoided in va
ous ways. For example, one might define the dissipation
Q(z,t) asrcẼ(z,t) where the functionẼ has the dimensions
of @L2/T3#. Likewise, one could represent the time depe
dence ofe(t) in terms ofK(t) instead ofQ(t) and introduce
rc instead ofrc

21/2. However, the above form is preferre
for the RT analysis, because it leads to a simpler form for
energy balance equation for the RT mixing layer.

The corresponding self-similar form forEn(z,t) is

En~z,t !5en~ t ! f en
~x!, ~2.59!

where

en~ t !5en,0F t1t0

t0
G22

5en,0F W0

W~ t !G . ~2.60!

From simple dimensional considerations the dissipat
length scales for these flows have the form

h~z,t !5F rcnc
3

E~z,t !G
1/4

, ~2.61!

wherenc is a measure of the kinematic viscosity of the tw
fluids. This length scale is analogous to the Kolmogorov d
sipation scale associated with the more usual hydrodyna
turbulence. For the viscosity-independent scaling given
Eqs. ~2.56!–~2.58!, this length scale has a time dependen
of t2(2g23)/4 for the turbulencelike assumption andt1/2 for
the case ofEn . The t1/2 scaling is consistent with a viscou
scaling@recall Eq.~2.18!#, which should be expected since
was constructed from a definition of dissipation@Eq. ~2.54!#
that explicitly referenced the viscosity as a physically r
evant parameter.

Another length scale analogous to the Taylor microsc
may be constructed, e.g.,

l~z,t !5Fnc

Q~z,t !

E~z,t ! G1/2

. ~2.62!
5-6
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This length scale has a time dependence oft11 for both the
turbulencelike assumption and the case ofEn .

Thus we see the emergence of three distinct length sc
a viscous scaleh, analogous to a Kolmogorov dissipativ
scale, an intermediate, viscous-dynamical scalel, analogous
to the Taylor microscale, and a large integral scaleW(t). The
emergence of these various additional length scales is
sistent with self-similarity. Of them, the viscous scale grow
rate depends on assumptions regarding the nature of the
sipative processes. The time exponents of the visco
dynamical scale growth rate and of the large-scale gro
rate are independent of particular assumptions regarding
dissipative scales.

III. ENERGY SOURCES

The KH and RT mixing layers have ‘‘external’’ sources
energy that are converted to kinetic energy and dissipa
For the Rayleigh-Taylor case, this source is the potential
ergy of the fluids. For the Kelvin-Helmholtz case, the ene
source is the velocity difference across the mixing lay
Each case will be analyzed separately.

A. The Rayleigh-Taylor mixing layer

A precise definition of the potential energy for the R
mixing layer requires a precise definition of the position
the layer in the direction of the acceleration. A coordinatez is
now introduced in the direction of the acceleration wher
06630
es,
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z50 corresponds to the center of the mixing layer. For p
poses of the present calculation we will consider the to
potential energy over a domain inz that extends from a poin
z52zref below the lower edgez52W(t)/2 to a point z
51zref that is above the mixing-layer edgez51W(t)/2.
For simplicity we have not distinguished between t
bubble-side and spike-side dynamics—such a distinction
pears to require a specific model or theory of the RT mix
layer. The potential energy then becomes

P~ t !5E
2zref

1zref
r̄~z!g~z1zref!dz

5E
2zref

1zref
r̄~z!gz dz1gzrefE

2zref

1zref
r̄~z!dz. ~3.1!

The planar-averaged density integrated over the volu
2zref<z<zref is

r̄S5E
2zref

1zref
r̄~z!dz, ~3.2!

so that

P~ t !5E
2zref

1zref
r̄~z!g~z1zref!dz5gE

2zref

1zref
r̄~z!z dz1gzrefr̄S .

~3.3!

The summed density may be written as
e
e

r̄S5E
2zref

2W~ t !/2
r1dz1E

2W~ t !/2

1W~ t !/2
rc@Ac~z,t !11#dz1E

1W~ t !/2

1zref
r2

5r1E
2zref

2W~ t !/2
dz1rcE

2W~ t !/2

1W~ t !/2
dz1r2E

1W~ t !/2

1zref
dz1rcAE

2W~ t !/2

1W~ t !/2
C~z,t !dz

5~r1zref1r2zref!1rcAW~ t !I c,0 , ~3.4!

whereI c,n is thenth moment off c(x),

I c,n5E
21/2

11/2

f c~x!xn dx. ~3.5!

If the fluids are incompressible and there is no net mass flux in thez direction atz56zref , then the total mass in the volum
in the range2zref<z<zref is constant in time. This is equivalent to a solid boundary atz56zref , though we can consider th
circumstance wherein the walls are atzref→`. This zero-flux condition requires that the zeroth moment off c(x), I c,050,
yielding

r̄S5~r11r2!zref52rczref . ~3.6!

The doubly averaged density~i.e., the planar-averaged density averaged over2zref<z<zref) is

^r̄&5
r̄S

2zref
5rc . ~3.7!

Now consider the integral
5-7
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P1~ t !5P~ t !2gzrefr̄S5gE
2zref

1zref
r̄~z!z dz, ~3.8!

or, equivalently,

1

g
P1~ t !5E

2zref

2W~ t !/2
r1z dz1E

2W~ t !/2

1W~ t !/2
rc@AC~z,t !11#z dz1E

1W~ t !/2

1zref
r2z dz

5r1E
2zref

2W~ t !/2
z dz1rcE

2W~ t !/2

1W~ t !/2
z dz1r2E

1W~ t !/2

1zref
z dz1rcAE

2W~ t !/2

1W~ t !/2
C~z,t !z dz

5
1

2
~r22r1!zref

2 1rcAW2~ t !F I c,12
1

4G . ~3.9!
nc
gy
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Thus the total potential energy is

P~ t !5gzrefr̄S1
g

2
~r22r1!zref

2 1rcgAW2~ t !F I c,12
1

4G
5rcg$2zref

2 1Azref
2 2AW2~ t ! Ĩ c,1%, ~3.10!

where we have let

Ĩ c,15F1

4
2I c,1G . ~3.11!

The total potential energy is dependent on the refere
positionzref . However, the rate of change of potential ener
is not

dP~ t !

dt
52rcgA Ĩc,12W~ t !

dW~ t !

dt
. ~3.12!

Determination of the value of the momentI c,1 requires a
specific model or theory of the RT flow. Such mode
dependent details are beyond the scope of the present p
which merely seeks to explain the origin of the self-simi
forms without resort to specific models or theories.

B. The Kelvin-Helmholtz mixing layer

The energy source of the KH mixing layer is the me
flow, which has infinite spatial extent. Recall that the fre
stream velocities areU1 andU2 and the velocity difference
across the layer is given by Eq.~2.14!. We will define the
energy relative to a frame moving at the average veloc
i.e., we are in the frame whereSu5U21U150. ThusU2
51Du/2 and U152Du/2. The total spatially integrated
mean flow kinetic energyMT(t) may be constructed abou
some reference volume over the domain2zref<z<1zref
which again encompasses the shear layer2W(t)/2<z
<1W(t)/2 for any time of interest:
06630
e

per,
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-

y,

MT~ t !5E
2zref

1zref
r̄~z,t !Ux

2~z,t !dz

5E
2zref

2W~ t !/2
r1S 2

1

2
DuD 2

dz

1E
2W~ t !/2

1W~ t !/2
r̄~z,t !Ux

2~z,t !dz

1E
W~ t !/2

1zref
r2S 1

2
DuD 2

dz, ~3.13!

or, exploiting the self-similarity and lettingx ref5zref /W(t),

MT~ t !5S 1

2
DuD 2

W~ t !H @r11r2#S x ref2
1

2D
1rcE

21/2

11/2

@A fc~x!11# f u
2~x!dxJ . ~3.14!

This reduces to

MT~ t !5rcS 1

2
DuD 2

W~ t !$@2x ref21#1AIcu21I u2%

5rcS 1

2
DuD 2

W~ t !H F2
zref

W~ t !
21G1AIcu21I u2J

5rcS 1

2
DuD 2

$2zref2 Ĩ u2W~ t !%, ~3.15!

where Ĩ u2 is assumed to be positive:

Ĩ u25@12AIcu22I u2#512E
21/2

11/2

@A fc~x!11# f u
2~x!dx.

~3.16!

As in the case of the Rayleigh-Taylor mixing-layer potent
energy, this definition of source energy gives infinity aszref
→`. Again, the rate of change of the source energy
bounded and independent of the choice ofzref :
5-8
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dMT~ t !

dt
52rcĨ u2S 1

2
DuD 2 dW~ t !

dt
52rcĨ u2U f s

2 dW~ t !

dt
.

~3.17!

Again, the momentĨ u2 must be determined from a particula
model or theory, which is beyond the scope and intent of
paper.

IV. ENERGY BALANCES

Now we note that the energy balance for the mixing la
ers is

d

dt
$total energy%5$dissipation%,

d

dt
$P~ t !1MT~ t !1QT~ t !%52ET~ t !, ~4.1!

whereP(t) is the total potential energy,MT(t) is the total
mean flow energy,QT(t) is the total fluctuational energy, an
ET(t) is the total dissipation rate. The word ‘‘total’’ is agai
taken to mean ‘‘integrated over the domain.’’ The velociti
will be constructed as mass-weighted~i.e., Favre! averages.
Thus there will be a mean flow in the case of the RT mixi
layer.

A. The energy balance for the Rayleigh-Taylor mixing layer

The kinetic energy integrated over all spaceQT(t) in the
RT system is given by

QT~ t !5E
2`

1`

Q~z,t !dz

5Q~ t !E
2`

1`

f Q~x!d„W~ t !x…

5Q~ t !W~ t !I Q , ~4.2!

where

I Q5E
2`

1`

f Q~x!dx. ~4.3!

The dissipation rate integrated over the entire layer is

ET~ t !5E
2`

1`

E~z,t !dz

5e~ t !E
2`

1`

f e~x!d„W~ t !x…

5e~ t !W~ t !I e5
z0I e

rc
1/2 Q3/2~ t !, ~4.4!

where

I e5E
2`

1`

f e~x!dx. ~4.5!
06630
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The mean kinetic energy integrated over the entire laye

MT~ t !5E
2`

1`

r̄~z,t !Ũ2~z,t !dz

5rc

U0
2

Q0
Q~ t !E

2`

1`

@A fc~x!11# f u
2~x!d„W~ t !x…

5rc

U0
2

Q0
Q~ t !W~ t !~AIcu21I u2!

5
U0

2

UQ
2

Q~ t !W~ t !~AIcu21I u2!, ~4.6!

where

I cu25E
2`

1`

f c~x! f u
2~x!dx, ~4.7!

I u25E
2`

1`

f u
2~x!dx, ~4.8!

and

UQ5FQ0

rc
G1/2

. ~4.9!

The total energy balance may be written as

22 Ĩ c,1rcAgW~ t !
dW~ t !

dt
1FQ~ t !

dW~ t !

dt
1W~ t !

dQ~ t !

dt G
3F I Q1S U0

UQ
D 2

~AIcu21I u2!G52
z0I e

rc
1/2 Q3/2~ t !, ~4.10!

or, equivalently,

22rcAg
dW~ t !

dt
1JQF Q~ t !

W~ t !

dW~ t !

dt
1

dQ~ t !

dt G
52

Je

rc
1/2

Q3/2~ t !

W~ t !
, ~4.11!

where

JQ5
1

Ĩ c,1

F I Q1S U0

UQ
D 2

~AIcu21I u2!G , ~4.12!

Je5z0

I e

Ĩ c,1

. ~4.13!

The energy balance for self-similarity is

24Ag
W0

t0
S t1t0

t0
D14JQ

Q0

rct0
S t1t0

t0
D52Je

Q0
3/2

rc
3/2W0

S t1t0

t0
D ,

~4.14!

which simplifies to
5-9
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AgW0
22JQUQ

2W02
Je

4
t0UQ

350. ~4.15!

Solving for W0 yields

W05
1

2
JQ

UQ
2

Ag H 16F11
Je

JQ
2

Agt0
UQ

G 1/2J . ~4.16!

The above equation suggests thatW0}@Ag#21. This seems
unreasonable—ifA or g vanishes, thenW0 should vanish.
However, the moments (JQ ,Je) and virtual origin data
(Q0 ,t0) may also be functions of the Atwood number. Th
suggests thatUQ}@Ag#. Accordingly, we introduce a dimen
sionless parameterG0 satisfying

UQ52G0t0Ag,

so that

W052Ag~G0
2JQt0

2!H 16F11
1

2

Je

G0JQ
2 G 1/2J . ~4.17!

The usual assumption regarding the RT mixing layer
that the bubbles~lighter fluid penetrating heavy fluid! grow
as

hB~ t !5aB~A!Agt2, ~4.18!

and spikes grow as

hS~ t !5aB~A!Agt2, ~4.19!

whereaB andaS are functions of the Atwood number. Th
width of the mixing layer then becomesW(t)5hB(t)
1hS(t),

W~ t !5@aB~A!1aS~A!#Agt252a~A!Agt2, ~4.20!

where

a~A!5
1

2
@aB~A!1aS~A!#. ~4.21!

Comparing this to the self-similar form forW(t) in the limit
of t→` allows the identification

W052a~A!Agt0
2, ~4.22!

for the case oft@t0 . The results of the analysis of th
growth rate now may be recast in terms ofa:

a~A!5
W0

2Agt0
2

5JQG0
2H 16F11

1

2

Je

G0JQ
2 G1/2J .

~4.23!

It is reasonable to assume thata(A).0, i.e., that the mix-
ing layer grows in time. In addition, we have assumed t
t0.0 @if t0 had been negative, then the entire analysis wo
be rewritten usingt2t0 /(2t0) and the equation abov
06630
s

t
ld

would involve2t0—requiring that2t0.0 and thus leading
to the same conclusions#. These two assumptions implyG0
.0. In addition,

JQ.0 ~4.24!

and

Je.0. ~4.25!

Thus we can identify the particular root needed as

a~A!5JQG0
2H 11F11

1

2

Je

G0JQ
2 G 1/2J . ~4.26!

This equation represents the functional form of the
growth-rate parametera. If a is to be a universal constant a
a given Atwood number, the right side of this equation m
be independent of initial conditions—either parameter by
rameter or collectively. Unfortunately, this self-similar anal
sis does not indicate the values of any of the paramete
these must be deduced from a specific theory, model
physical system~i.e., an experiment!. Values of aB deter-
mined experimentally are in the range of 0.05 to 0.07
modest Atwood number (A!1) and approach 0.5 as the A
wood number approaches 1. TheaS are typically larger than
aB and their ratio is dependent on Atwood number@19–23#.
The results shown in Eq.~4.26! does rely on one crucia
assumption regarding turbulence—that the dissipation ra
independent of the value of the viscosity and its self-sim
form is given by Eqs.~2.56!–~2.58!. Had the form given by
Eqs. ~2.59! and ~2.60! been used, the value fora would be
modified to

a~A!52JQG0
2. ~4.27!

B. The energy balance for the Kelvin-Helmholtz mixing layer

For the KH shear flow, the source of energy is the me
flow and the potential energy is zero. The kinetic energy a
dissipation rates integrated over the entire space have
same form as that for the RT mixing layer. The energy b
ance is thus

2rcĨ u2U f s
2 dW~ t !

dt
1FQ~ t !

dW~ t !

dt
1W~ t !

dQ~ t !

dt G I Q

52
z0I e

rC
1/2

Q3/2~ t !. ~4.28!

Rewriting this, we have

2U f s
2 dW~ t !

dt
1

JQ

rc
FQ~ t !

dW~ t !

dt
1W~ t !

dQ~ t !

dt G
52

Je

rc
3/2

Q3/2~ t !, ~4.29!

where
5-10
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JQ5
I Q

Ĩ u2

, ~4.30!

Je5
I e

Ĩ u2

. ~4.31!

The energy balance for the self-similarity is

W0

t0
FJe

Q0

rc
2U f s

2 G52JQFQ0

rc
G3/2

~4.32!

or

W0

t0
5

Q0

rcU f s
2 FQ0

rc
G1/2 JQ

$12Je~Q0 /rcU f s
2 !%

. ~4.33!

Now let

R05
Q0

rcU f s
2

, ~4.34!

so

W0

t0
5

JQR0
3/2

@12JeR0#
U f s5

JQR0
3/2

2@12JeR0#
Du , ~4.35!

suggesting that

W~ t !5
JQR0

3/2

@12JeR0#
U f s~ t1t0!5

JQR0
3/2

2@12JeR0#
Du~ t1t0!.

~4.36!

Alternatively, if the dissipation were assumed to be of t
form given by Eqs.~2.59! and ~2.60!, then the above rela
tionship would be modified to

W~ t !5JQR0
3/2U f s~ t1t0!5

JQR0
3/2

2
Du~ t1t0!. ~4.37!

One may infer from these equations thatJeR0,1. As is
the case with the RT mixing-layer growth parameter, the s
cific values of the parameters in this expression must be
termined from a specific model, theory, or experiment. In
pendence from initial conditions again implies that t
various parameters in this expression must be independe
initial conditions either parameter by parameter or coll
tively. Note that experimental evidence suggests thatW0 /t0
is approximately 0.14–0.22@24,25#.

V. SELF-SIMILARITY OF INHOMOGENEOUS SPECTRA

A. Scaling of energy spectra

The spectral representation of an inhomogeneous func
is, to some extent, arbitrary. For the case of the RT mix
layer and the KH shear layer, several choices are obvi
For convenience, we will assume that the directions perp
dicular to the acceleration or shear gradient~i.e., perpendicu-
06630
e

e-
e-
-

of
-

n
g
s.
n-

lar to thez axis! are statistically homogeneous and thus m
be aptly represented in terms of Fourier integral transfor
For the inhomogeneous directionz, one choice is to expand
in the inhomogeneous directions using appropriate b
functions~e.g., Hermite functions for bounded systems, a
trigonometric functions or Jacobi polynomials for bound
domains!. Another possibility is to assume a representat
that describes the spectra of the correlations in terms of F
rier integral transforms of the two-point correlations in a
three directions at each point in the inhomogeneous dom
Besnardet al. @26# used an inhomogeneous spectrum ba
on a Wigner representation of the inhomogeneous spect
to produce a spectrum of the formE(x,k,t) wherek25kx

2

1ky
21kz

2. For the case of a single inhomogeneous direct
z, the form becomesE(z,k,t). Zhou@27# defined a spectrum
for a mixing layer of the formE(z,k,t) wherez is the inho-
mogeneous direction perpendicular to the plane of the m
ing layer andk25kx

21ky
2. Note that these spectral definition

~that of Zhou and of Besnardet al.! share the same funda
mental dimensionality, as do their arguments, and thus s
the same self-similar functional forms.

The minimal assumption required to begin the analysis
that the energy spectrumE(z,k,t) has the dimensions o
@L3T22# so that upon integration over all wave numbers t
result is a turbulent kinetic energyq(z,t) with dimensions
@L2T22#. We will also seek a spectral representation for t
turbulent kinetic energy dissipation rateD(z,k,t). The di-
mensions are@L3T23#. The rationale for this representatio
of the dissipation rate is that viscosity (g51/2) does not
scale by the same group as the velocity (g51) or accelera-
tion (g52). Thus we seek a representation that is indep
dent of viscosity. Thus we assume a cascadelike proc
wherein the energy is carried to small scales where it is ev
tually dissipated by viscosity at a rate and in a manner tha
independent of the actual numerical value of the viscos
This is the picture that Kolmogorov describes for isotrop
turbulence—we adopt it here out of convenience and in
hope that it is not an inaccurate conjecture for these flow

We begin by noting that the simple form of the spectru
describing isotropic turbulence is not appropriate for
strongly inhomogeneous system such as a mixing layer.
will utilize the subgroup consistent with the analysis f
W(t). Now we have

t~3g22!E~z,k,t !5E„tgz,t2gk,t~ t1t0!2t0…. ~5.1!

Differentiating with respect tot gives

~3g22!t~3g23!E~z,k,t !

5
]E~z,k,t !

]z
gzt~g21!2

]E~z,k,t !

]k
gkt2~g11!

1
]E~z,k,t !

]t
~ t1t0!. ~5.2!

Settingt51 gives the determining equation
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~3g22!E~z,k,t !5
]E~z,k,t !

]z
gz2

]E~z,k,t !

]k
gk

1
]E~z,k,t !

]t
~ t1t0!. ~5.3!

For convenience, we divide through by (t1t0):

~3g22!

~ t1t0!
E~z,k,t !5

]E~z,k,t !

]z

gz

~ t1t0!
2

]E~z,k,t !

]k

gk

~ t1t0!

1
]E~z,k,t !

]t
. ~5.4!

Characteristics ink are

dk~ t !

dt
52

gk~ t !

~ t1t0!
, ~5.5!

giving

k~ t !5k0F t1t0

t0
G2g

. ~5.6!

Characteristics inz are

dz~ t !

dt
5

gz~ t !

~ t1t0!
, ~5.7!

giving

z~ t !5z0F t1t0

t0
Gg

. ~5.8!

Now, we divide the determining equation forE by (t1t0),
and substituting the characteristic equations yields

~3g22!

~ t1t0!
E~z,k,t !

5
]E~z,k,t !

]z

dz~ t !

dt
1

]E~z,k,t !

]k

dk~ t !

dt
1

]E~z,k,t !

]t

5
dE„z~ t !,k~ t !,t…

dt
. ~5.9!

Solving this along the characteristic gives

E„z~ t !,k~ t !,t…5E0~z0 ,k0!F t1t0

t0
G ~3g22!

. ~5.10!

Now apply the characteristic solutions fork(t) andz(t):

E„z~ t !,k~ t !,t…5E0S z~ t !F t1t0

t0
G2g

,k~ t !F t1t0

t0
GgD

3F t1t0

t0
G ~3g22!

. ~5.11!

Now define
06630
W~ t !5W0F t1t0

t0
Gg

~5.12!

and

K~ t !5K0F t1t0

t0
G2g22

. ~5.13!

Note that the expression forK(t) is precisely the result tha
would be produced by applying the same principles toK(T)
that were applied toW(t) and E(z,k,t), demonstrating the
consistency of the approach. The self-similar form
E(z,k,t) may now be rewritten as

E~z,k,t !5K~ t !W~ t ! f ~x,j!, ~5.14!

where

x5
z

W~ t !
, ~5.15!

j5kW~ t !, ~5.16!

and

f ~x,j!5~K0W0!21E0~xW0 ,j/L0!. ~5.17!

We now will constrainf (x,j) as follows:

E
0

`

f ~0,j!dj51, ~5.18!

so that

E
0

`

E~0,k,t !dk5K~ t !E
0

`

f ~0,j!dj5K~ t !, ~5.19!

that is,K(t) is the kinetic energy of the mixing layer at th
midplanez50.

The physical accelerationg implies the same constraint o
g as shown for the model ofW(t) in the previous section
For the RT mixing layer (g52) W(t) andK(t) grow ast2.
For the KH mixing layer (g51) W grows ast andK behaves
as t0.

Now define the turbulent kinetic energy integrated acr
the mixing layer as

QT~ t !5E
2`

1`E
0

`

E~z,k,t !dk dz

5K~ t !W~ t !I f

5K0

Q~ t !

Q0
W~ t !I f , ~5.20!

where

I f5E
2`

` E
0

`

f ~x,j!dj dx. ~5.21!
5-12
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If it is assumed that the two-point correlation functions of t
velocity field possess algebraic tails at large separations,
the infrared~low wave number! portion of the spectrum may
be presumed to be a power law ink:

lim
k→0

E~z,k,t !5E0~z,t !kn, ~5.22!

whereE0 has dimensions ofL31nT2. Then we may write

t~31n!g22E0~x,t !5E0„t
gz,t~ t1t0!2t0…. ~5.23!

Solving this in the same manner as was done forE(z,k,t)
yields

E0~x,t !5e0F t1t0

t0
G ~31n!g22

f E0
~x!. ~5.24!

Note that for simple~isotropic or anisotropic! homogeneous
turbulence the large scales are assumed to be invariant@28#.
This assumption implies that (31n)g2250. For decaying
homogeneous turbulence this relationship represents a
straint ong andn and was exploited by Clark and Zemach
determine the decay laws of isotropic turbulence. For
case of mixing layers, the only possible infrared scaling t
is consistent with both the permanence of large scales
the accelerative scalingg52 is n522. The case ofn5
22 was identified previously by Inogamov@29,30# and more
recently in work by Dimonte@31–34#. However, the value of
n522 yields spectra that are divergent at small wavenu
bers, and thus may indicate that the largest scales are
invariant, but grow with the mixing layer in a prescribe
manner dependent on the scaling exponentn.

B. Inhomogeneous dissipation rateD„z,k,t…

We assume that an energy transfer spectrumT(z,k,t) ~i.e.,
a function that transfers energy to some dissipative ‘‘rang!
has dimensions ofL3T23, giving

t~3g23!TT ~z,k,t !5T „tgz,t2gk,t~ t1t0!2t0….
~5.25!

Following the same procedure as established forE(z,k,t),

~3g23!

~ t1t0!
T ~z,k,t !5

]T ~z,k,t !

]z

gz

~ t1t0!
2

]T ~z,k,t !

]k

gk

~ t1t0!

1
]T ~z,k,t !

]t
. ~5.26!

The characteristics are unchanged, yielding a solution al
the characteristic of the form

T „z~ t !,k~ t !,t…5T0~z0 ,k0!F t1t0

t0
G ~3g23!

. ~5.27!

Now apply the characteristic solutions fork(t) andz(t):
06630
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T „z~ t !,k~ t !,t…5T0S z~ t !F t1t0

t0
G2g

,k~ t !F t1t0

t0
GgD

3F t1t0

t0
G ~3g23!

. ~5.28!

Then the self-similar form can be rewritten as

T ~z,k,t !5K3/2~ t ! f T ~x,j!. ~5.29!

We will identify the dissipatione(z,t) with the energy trans-
fer:

e~z,t !5E
0

`

T ~z,k,t !dk5
K3/2~ t !

W~ t ! E
0

`

f T ~x,j!dj.

~5.30!

Note that the energy transfer is presumed to be integrabl
this interval. In practical circumstances, we may envision
large-wave-number region where the transfer deposits en
in viscous dissipation. In this circumstance, the transfer v
ishes at highk and the integral is finite. For convenience, w
define

e~0,t !5E
0

`

T ~0,k,t !dk5
K3/2~ t !

W~ t ! E
0

`

f T ~0,j!dj5e0

K3/2~ t !

W~ t !
,

~5.31!

or

e05E
0

`

f T ~0,j!dj. ~5.32!

For the case of vanishing viscosity~i.e., very high Reynolds
number! we anticipate that remains finite—this assumption
consistent with the requirement that the dissipation rema
finite and nonzero as the viscosity vanishes.

For convenience, we will define

L05
K0

3/2

e0
, ~5.33!

so that the dissipatione at the center of the mixing layer is

e~0,t !5E
0

`

T~0,k,t !dk5
K3/2~ t !

L0
, ~5.34!

where

1

L0
5E

0

`

h~0,j!dj. ~5.35!

The dissipation across the entire domain is now
5-13
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«~ t !5E
2`

1`E
0

`

e~z,t !dk dz

5K3/2~ t !E
2`

1`E
0

`

h~x,j!dj dx

5K3/2~ t !I h , ~5.36!

where

I h5E
2`

1`E
0

`

h~x,j!dj dx. ~5.37!

This is essentially the same result that one would achieve
simply stating that the total dissipation integrated across
layer has dimensions of@L3/T3# and pursued a similar analy
sis.

C. Density fluctuation spectra

We present the following by first noting that we will a
sume the following scaling for the density:

r85zr ~5.38!

and restricted to

z5tb. ~5.39!

The self-similar form for the inhomogeneous spectrum of
fluctuating density-density correlation is

fr~z,k,t !5B~ t !W~ t ! f f~x,j!, ~5.40!

where

B~ t !5B0F t1t0

t0
G2b

~5.41!

and

E
0

`

f f~0,j!dj51. ~5.42!

The variations in density variance across the layer are

b~z,t !5B~ t ! f b~x!, ~5.43!

where

f b~x!5E
0

`

f f~x,j!dj. ~5.44!

Consider the infrared spectrum of the density-correlat
spectrum, and assume a power-law spectrum wherein
exponentn is independent ofz ~as was done for the energ
spectrum!:

lim
k→0

fr~z,k,t !→f0~z,t !kn. ~5.45!

Scaling off0(z,t) implies that
06630
y
e
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t~11n!g12bf0~z,t !5f0„t
gz,t~ t1t0!2t0…. ~5.46!

This yields

f0~z,t !5Bf~ t !W11n~ t ! f f,0~x!, ~5.47!

where

Bf~ t !5Bf,0F t1t0

t0
G2b

. ~5.48!

A reasonable expectation is constancy in time of the fl
tuating density correlation at the center of the mixing lay
implying thatb50, and thatf0(z,t) behaves as

f0~z,t !5Bf,0W
11n~ t !. ~5.49!

The dissipation of density~or scalar! varianceer8 has dimen-
sions ofr2/T and thus

t2b21er8~z,t !5er8„t
gz,t~ t2t0!1t0…, ~5.50!

yielding

~2b21!er85gx
]er8
]z

1~ t1t0!
]er8
]t

. ~5.51!

The solution of this has the form

er8~z,t !5er8,0F t1t0

t0
G ~2b21!

f er8~x!, ~5.52!

or, more conveniently,

er8~z,t !5 ẽr8,0

dB~ t !

dt
f er8~x!. ~5.53!

D. Time-scale statistics

Consider a spectral time scale with dimensions@LT#:

~g11!u~z,k,t !5
]u~z,k,t !

]z

gz

t1t0
2

]u~z,k,t !

]k

gk

t1t0

1
]u~z,k,t !

]t
, ~5.54!

so that

u„z~ t !,k~ t !,t…5u0F t1t0

t0
Gg11

~5.55!

and

u~z,k,t !5F W2~ t !

K1/2~ t !G f u~x,j!. ~5.56!

Let

u05F W0

K0
1/2G ~5.57!
5-14
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and

Q~ t !5u0F W~ t !

K1/2~ t !
G5u0F t1t0

t0
G , ~5.58!

so

u~z,k,t !5Q~ t !W~ t ! f u~x,j!. ~5.59!

Integrating over all wave numbers yields

q~z,t !5Q~ t !E
0

`

f u~x,j!dj5Q~ t ! f u~x!, ~5.60!

where we have again chosen the normalization

E
0

`

f u~0,j!dj51. ~5.61!

Note that the spectrally integrated time scale grows as a
ear function of time independent of the value ofg.

E. Scaling of turbulent viscosityÕdiffusion

Consider a spectral diffusivity with dimensions@L3T21#,

~3g21!n~z,k,t !5
]n~z,k,t !

]z

gz

t1t0
2

]n~z,k,t !

]k

gk

t1t0

1
]n~z,k,t !

]t
, ~5.62!

so

n„z~ t !,k~ t !,t…5n0F t1t0

t0
G3g21

~5.63!

and

n~z,k,t !5K1/2~ t !W2~ t !Yn~x,j!. ~5.64!

For the particular elementg52 we will set

n05K0
1/2W0 , ~5.65!

so that

n~ t !5n0F t1t0

t0
G3

~5.66!

and

n~z,k,t !5n~ t !W~ t !Yn~x,j!. ~5.67!

Integrating over all wave numbers yields

n~z,t !5n~ t !E
0

`

Ynu~x,j!dj5n~ t !Y~x!. ~5.68!
06630
n-

So the spectrally integrated turbulent viscosity grows a
cubic function of time.

VI. CONCLUSIONS

The fundamental mathematical basis for the se
similarity of KH and RT mixing layers has been demo
strated using a simplified group-theoretic approach. The f
damental assumption inherent in the assertion of full s
similarity is that the system evolves to a solution that
invariant under an appropriate subgroup of the full group
transformations under which the dynamics of the system
invariant. Pragmatically, this subgroup has the property t
the ‘‘scaled’’ function of unscaled variables is equal to t
unscaled function of scaled variables. This approach does
demonstrate that a real physical system, e.g., an experim
or a mathematical model~e.g., Navier-Stokes or a turbulenc
model! will tend toward such a state. Rather, it elucidates
features of such a state, whether or not that state is physic
attainable.

The linear-in-time growth rate of the KH mixing layer i
shown to be a consequence of the assumption that the sc
subgroup leaves the fundamental driving mechanism of
layer, the velocity difference, invariant. Likewise, th
quadratic-in-time growth rate of the RT layer is a cons
quence of the assumption that the acceleration is invari
The functional dependencies of the growth-rate coefficie
were obtained by exploiting the functional representatio
suggested by the simplified group-theoretic analysis as w
as a simple energy balance. These results do not demons
that the growth-rate coefficients@e.g., a(At) for the RT
layer# are ‘‘universal’’—i.e., identical for different realiza
tions of similar flow configurations. Such detailed numeric
results require the use of a specific theory or model, and
universality of the coefficients may very well be model d
pendent. It is hoped that the relationships put forth in t
paper will provide additional objective tests for full sel
similarity of the Rayleigh-Taylor and Kelvin-Helmholtz mix
ing layers.
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